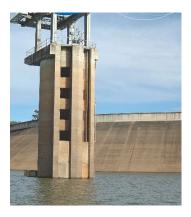


Singleton Council

Integrated Water Cycle Management Plan


Evaluation Study

APPENDICES

- Technical & Supporting Information

June 2010

DLM Environmental Consultants Pty Ltd Strategies for a Water Efficient Future

DOCUMENT STATUS AND RELEASE INFORMATION

DLM Environmental Consultants Pty Ltd ABN 63 119 722 093

641 Macauley Street Albury NSW 2640 Australia

T: 61 2 6041 6403 F: 61 2 6041 6403 E: <u>darylm@bigpond.com</u> M: 0417 271 618

Client:	Singleton Council
Project No:	1007/1/IWCM
Document Title:	Integrated Water Cycle Management Evaluation Study: Appendices

Copyright/ Disclaimer

This document is and shall remain the property of Singleton Council. Unauthorised use of this document in any form whatsoever is prohibited.

Document Status

Rev No.	Prepared By		Revie	wer	Approved for issue		
	Name	Date	Name	Signature	Signature	Date	
0	D. McGregor	19/02/10	D. McGregor		Oldman	19/02/10	
Rev.1	D. McGregor	11/04/10	D. McGregor		O Comment	11/04/10	
Rev. 2	D. McGregor	5/05/10	D. McGregor		O Comment	7/05/10	
Rev. 3	D. McGregor	17/04/10	D. McGregor		O Comment	17/05/10	
Rev. 4	D. McGregor	26/06/10	D. McGregor		O Comment	28/06/10	
Final	D. McGregor	12/07/10	D. McGregor		O Gong	18/07/10	

Document Status i of i

Singleton Council: IWCM Evaluation Study: Appendices

Appendices

Appendix A: Urban Water Services in Singleton

Appendix B: Singleton System Boundaries

Appendix C: IWCM Related Targets, Obligations, Responsibilities & Requirements

Appendix D: Demand Management & Projections

Appendix E: Information & Data Assessment

Appendix F: IWCM & Other Issues

Appendix G: Project Reference Group - Minutes of Meeting

Appendix H: Glossary & Abbreviations

Singleton Counc	cil: IWCM Evaluati	on Study: Appe	ndix A		
APPEI	NDIX A				
URBAN '	WATER S	ERVICE	S IN SIN	IGLETO	N

TABLE OF CONTENTS

1A.	GE	ENERAL	1
2A.	CA	ATCHMENT PERSPECTIVE	3
	a.	Location	3
	C.	Population Growth & Development	_
	d.	Topography	
	e.	Geology, Soils & Physical Characteristics	
	f.	Water Storage – Glennies Creek Dam	
	q.	Vegetation	
	h.	Land Use	
	i.	Flooding & Stormwater Management	20
	j.	Hunter-Central Rivers Action Plan	
	k.	Environmentally Sensitive Areas	24
3A.	W	ATER RESOURCES CONTEXT	27
	a.	Hunter Regulated River Context – Water Sharing Plan	27
	b.	Water Quality Objectives	30
4A.	Cl	JRRENT URBAN WATER SYSTEMS	34
	a.	Overview	34
	b.	Business Objectives & Levels of Service	34
	C.	Land Uses in Singleton & Associated Licensed Activities	34
	d.	Current Water Supply Services	43
	e.	Current Sewerage Services	50
	f.	Current Stormwater Services	53
5A.	CL	LIMATE CHANGE ASPECTS	55
6A.	SL	JMMARY	59
7A.	RE	FERENCES	61

Tables

Fable A1: Climate by Month	5
Table A2: Recent Climate Data (2009)	6
Table A3: Singleton Population	7
Table A4: Population Projections for Singleton	7
Table A5: National Parks, State Conservation Areas, Nature Reserves and Island N	lature
Reserves.	11
Table A6: Nationally Significant Wetlands - Hunter Region	14
Table A7: Hunter-Central Rivers Catchment Targets	22
Table A8: Water Access Licence Categories & Locations	27
Fable A9: Water Quality Objectives (Major Regulated Rivers)	30
Fable A10: Water Quality Objectives: Indicators & Criteria	31
Table A11: Water Quality Data	33
Table A12: Water Supply: Business Objectives	34
Table A13: Water Supply: Levels of Service	35
Table A14: Sewerage: Business Objectives	37
Table A15: Sewerage: Levels of Service	38
Table A16: Licences Issued by POEO in Singleton	40
Fable A17: Licenses Issued within the Shire, but outside the Town	41
Table A18: Summary of Water Supply Services	44
Table A19: Water Consumption Profile	45
Table A20: Water Quality Compliance Results	46
Table A21: Details of Water & Sewerage Assets	49
Table A22: Summary of Sewerage Services	
Гable A23: Annual Flows at Sewage Treatment Plant	
Table A24: Analysis Results for Singleton (2008 EPA Licence Periods)	52
Table A25: Current and Projected Climate Change in the Hunter-Central Rivers Catchmen	ıt 57

Figures

Figure A1: Principal Towns in Singleton LGA	3
Figure A2: Satellite Image of Singleton	4
Figure A3: Monthly Temperature and Rainfall Variations (showing changes to long-term	
averages from 1995)	6
Figure A4: Hunter – Central Rivers Catchment	8
Figure A5: Glennies Creek Dam Volume	11
Figure A6: Nature Reserves	13
Figure A7: Identified Wetlands	15
Figure A8: Historical Vegetation in the Hunter Catchment	17
Figure A9: Land Uses in the Hunter Region	20
Figure A10: Singleton Flood Inundation Plan	21
Figure A11: Hunter-Central Rivers CMA area	23
Figure A11: Environmental/Ecological Areas - Singleton LGA	25
Figure A12: Environmentally Sensitive Areas - Singleton	26
Figure A13: Hunter Regulated River Water Source	29

1A. GENERAL

Singleton Shire covers an area of 4,893 square kilometres and services a shire wide population of 21,936 (2006 Census).

The Town of Singleton itself has a population of over 13,600, is located in the centre of the Hunter region of NSW, and is 200 kilometres to the North West of Sydney. Some small towns and villages within the Shire include Broke, Jerrys Plains, Bulga, Ravensworth, Mount Olive, Belford and Branxton.

The Shire is noted both for coal mining (18 mines produce approximately 70 million tonnes of coal per year), 2 large power stations and a growing wine and tourism industry.

Water Supply

Council provides water supply services to a population of 17,919 (6,628 assessments; Source: 2008/09 Performance Report), with potable supplies to Singleton, Jerrys Plains, Broke, Mount Thorley and the Army Camp. Raw water is sourced from the Hunter River via Glennies Creek Dam.

The Singleton potable water supply system comprises:

- Obanvale WTP: (Direct Filtration): (Capacity: 30 ML/d)
 - The Water Treatment Plant was built in 1993
- 8 Service Reservoirs: (Capacity: 25 ML)
- 6 Pump Stations: (Capacity: 28.9 ML/d)
- 97.3 Kms of transfer and trunk supply mains
- 162.2 Kms of trunk reticulation mains.

<u>Sewerage</u>

Council provides sewerage services to a population of 15,009 (5,559 assessments; Source: 2008/09 Performance Report).

Council operates one sewage treatment plant, with the following characteristics:

- Intermittent Extended Aeration Activated Sludge Plant
- → Built in 1998
- → Discharge (under EPA Licence No. 3088) to Doughboy Hollow, adjacent to the Hunter River.

The overall sewerage system also comprises:

- 14 Pumping Stations (Capacity: 9.1 ML/d)
- 19 kms of Rising Mains
- 116 kms of Gravity Trunk Mains and Reticulation.

[Schematic Drawings of the Singleton Water Supply and Sewerage Systems are included as Appendices in Volume 2: Attachment B: System Boundaries].

2A. CATCHMENT PERSPECTIVE

a. Location

Singleton LGA is located in the Hunter – Central Rivers Catchment.

The predominant industry in Singleton Shire is coal mining, but tourism, wine production, manufacturing and support industries are also significant employers.

The Hunter Central Rivers catchment covers an area of 22,000 km², and has a population of more than 350,000.

The locations of the principal towns in the Singleton LGA as well as Lake St. Clair (Glennies Creek dam) are shown in Figure A1 below. A satellite image of the area is presented in Figure A2. This image highlights the Hunter River, the location of the Water Treatment Plant and the Sewage Treatment Works.

Figure A1: Principal Towns in Singleton LGA

(Source: NSW LGA)

Figure A2: Satellite Image of Singleton

(Source: Google Earth)

b. Climate

Key climate characteristics for Singleton are summarised in Table A1: below:

Table A1: Climate by Month

Month	Mean Daily Maximum Temp. (°C)	Decile 9 Max. Temp. (°C)	Mean Daily Minimum Temp. (°C)	Mean Monthly Rainfall (mm)	Lowest Recorded Rainfall (mm)	Daily Evaporation (mm)
January	31.7	37.9	17.1	76.9	0 (1903)	220
February	30.9	36.6	17.1	72.5	0 (1940)	168
March	28.9	33.7	15.0	59.1	0 (1909)	155
April	25.3	29.8	10.9	44.1	0 (1980)	120
May	21.3	25.0	7.5	40.4	0 (1957)	90
June	18.0	21.0	5.3	47.6	2.3 (1953)	60
July	17.4	20.2	3.8	43.3	0.3 (1972)	71
August	19.4	23.3	4.4	36.4	0 (1982)	81
September	22.9	27.9	7.0	41,7	0 (1980)	111
October	26.3	31.7	10.3	51.9	1.4 (1988)	164
November	29.2	35.3	13.2	59.8	1.0 (1915)	195
December	31.3	36.7	15.7	67.7	0 (1884)	205
Annual	25.2	-	10.6	641.4	234.2 (1950)	1640

(Source: Bureau of Meteorology – Jerrys Plains & Cessnock Weather Stations)

Rainfall is relatively low; at an annual average of 641 mm. The wettest months are January and February, although rainfall is reasonably consistent from October to March. The lowest rainfall month is August. Average annual evaporation exceeds annual rainfall by almost 1000 mm annually. The data presented is long term (1884 to 2009).

It should also be noted that:

- The lowest annual rainfall of 234.2 mm (1950) is only 36.5% of the long term (125 years) annual average of 641.4 mm.
- There are 8 months where, historically, no rain has been recorded.
- Average annual evaporation exceeds rainfall by nearly 1,000 mm per year.

Climate data for the 12 months from January 2009 to December 2009 is presented for comparison in the Table below.

It is interesting to note that 2009 was cooler than the long term averages (6.7% lower mean maximum temperatures), but much warmer overnight - 16.4% higher mean daily minimum temperatures than the long term mean.

Rainfall was also significantly higher (16.5%) than the long term mean.

Table A2: Recent Climate Data (2009)

RECENT DATA (2009)

Month	Mean Daily Maximum Temp. (°C)	Mean Daily Minimum Temp. (°C)	Mean Monthly Rainfall (mm)
January	33.7	17.9	7.4
February	27.7	17.0	155.6
March	24.0	16.1	191.1
April	23.7	11.4	54.1
May	19.0	9.2	38.3
June	15.5	6.5	64.7
July	19.0	4.5	12.3
August	24.9	7.4	2.3
September	24.0	12.0	36.3
October	25.0	13.5	53.8
November	35.3	15.5	42.4
December	34.0	17.0	89.2
Annual	23.5	12.3	747.5
Variation to Long Term Average.	-6.7%	+16.4%	+16.5%

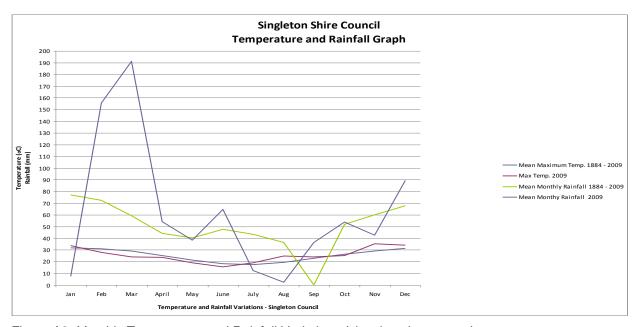


Figure A3: Monthly Temperature and Rainfall Variations (showing changes to long-term averages from 1995)

c. Population Growth & Development

The total population of the Shire, as reported by the 2006 Census, was 21,936, an increase of 7.6% (1551 people) since the 2001 Census (Refer Table A3 below).

The Town of Singleton itself had a population of 13,664, compared with 12,530 in 2001 – a growth of 9.1% (or 1.75% pa on average). This population growth is well above the national growth rate of 1.3% pa over the last 10 years. Growth in dwellings has grown more rapidly than population growth. Between 2001 and 2006, an additional 507 dwellings were constructed in Singleton. This represents a growth rate of 2% pa.

<u>Potential issue</u>: From the point of view of a water utility, this implies an increasing customer base (number of assessments) and, potentially increasing water consumption and wastewater generation.

Table A3: Singleton Population

Location:	Population 2001 Census:	Population 2006 Census
Singleton LGA	20,385	21,936
Singleton Town	12,530	13,664

Source: ABS 2009.

The estimated population in the Shire in 2008 was 23,458 (Source: ABS)

Typically, the ABS projections are for a growth rate of 0.9% pa. The Hunter Valley Research Foundation has, however, predicted a "medium" growth rate of 1.19% pa.

In discussions with Council (Brian Carter, pers.comm); growth rates of 0.8% for population and 1.0% pa for dwellings have been adopted for the 2010 Developer Servicing Plans. Population projections, then, are based on Council's projections and are presented in Table A4 below.

Table A4: Population Projections for Singleton

Location	2006	2008	2010	2015	2020	2025	2030	2035	2040
	Census	Estimate							
Singleton LGA	21,936	23,458	23,835	24,804	25,812	26,861	27,953	29,089	30,270
Singleton Town	13,664	14,160	14,387	14,736	15,334	15,958	16,606	17,281	17,984

d. Topography

Singleton is located within the Hunter – Central Rivers Catchment (Refer Figure A4 below). The topography is generally described as undulating to hilly cleared lands graduating to flatter areas, with some areas of remnant vegetation. The most significant topographical feature is the Hunter River.

Singleton is largely characterised as rich alluvial floodplains.

Figure A4: Hunter - Central Rivers Catchment

e. Geology, Soils & Physical Characteristics

Geology

The Hunter Region is a transitional area between the Early Permian and middle Triassic rocks of the Sydney Basin (in the south), and the Palaeozoic rocks of the New England Fold Belt (to the north). These two major geological areas are separated by a fault line, the Hunter-Mooki Thrust Fault.

The Permian-age rocks, located in the central and south-eastern areas of the Region, are part of the Sydney Basin. They form the main part of the Hunter Valley and feature numerous coal seams of varying thicknesses and depths. These Permian rocks were formed in shallow marine and estuarine environments and therefore contain salt. This salt content has a direct influence on the level of salinity of many streams found on the central valley floor.

The Hunter River begins in the Barrington Tops, which are the second highest point in NSW after the Snowy Mountains. Downstream of the Rouchel Brook confluence, where the river heads inland towards Muswellbrook and Denman, the land begins to flatten out. The geology in this part of the catchment is characterised by softer rocks of conglomerate, shale, sandstone and coal form the Permian period (245-286 million years old). Soils in this area are softer, have a higher salt content and are highly erodible. Just south of Denman is where the Goulburn River joins the Hunter, connecting it to the western part of the Hunter catchment. This area is characterised by hard thick layers of sandstone, dissected by valleys of sandy soils, which past events have shown, are very easily eroded. When the Goulburn River and the Wollombi Brook, which also joins the Hunter from the western part of the catchment, have flooded in the past, large deposits of sand have been found on the banks of the Hunter River at Singleton, Maitland and other areas south of the confluence. As the river travels down to the lower Hunter Valley floodplains to Singleton and Maitland, the soils are finer-grained silts that have accumulated over millennia from sediment sources further up the valley, that have been trapped by vegetation along the floodplain.

Soils

Soil types are very dependant on the parent rock and the locations in the landscape. Floodplain soils (which are predominant in Singleton Shire) include alluvials, podzolics and some "cracking" clays.

Given that the geology of the area derives form marine and estuarine environments, the soils generally contain salt.

Soil management issues in Singleton Shire, therefore, include management of land salinity, erosion, and sulphate soils and soil structure decline.

Potential Issues:

Within the urban area of Singleton itself, issues include:

- urban salinity;
- groundwater recharge and / or pollution;
- gully and stream erosion.

f. Water Storage – Glennies Creek Dam

Glennies Creek sub-catchment is located in the centre of the Hunter Catchment.

Glennies Creek Dam is located about 25 kilometres to the north of Singleton, 39 kilometres upstream of the junction of Glennies Creek with the Hunter River. The body of water behind the dam is Lake St Clair.

Relevant storage details are:

Catchment area: 233 km²
 Surface area: 1,540 ha

FSL: 186 m above sea level

■ FSL Capacity: 283,000 ML

The Dam was constructed in 1983 and operates in conjunction with **Glenbawn Dam**. Together, the two dams supply nearly 250,000 ML of water per year for:

- ★ town supplies (Singleton, Aberdeen and Scone);
- ★ stock and domestic;
- industry (particularly coal mining);
- agriculture and horticulture (sheep and cattle);
- pastures and vineyards;
- recreation and tourism.

There are 1,405 licences within the Glennies Creek Dam and Glenbawn Dam system with 247,350 ML combined entitlement.

High security/industry entitlements 21,700 ML
 General security entitlements 128,500 ML
 Stock and domestic requirements 1,850 ML
 Town water supplies 10,800 ML
 Major Utility Power Generation 36,000 ML
 Supplementary water entitlements 48,500 ML

Water users hold access licenses which determine their share component. Share components specify how much of the valley's resource is available for each licence holder to use.

Storage in the Dam has recovered from the low of 48% in January 2008 to a current (25 January 2010) capacity of 72%. Refer Graph in Figure A5 below.

It should be noted that Town entitlements amount to **only 2.8%** of the total entitlements from Glennies Creek Dam.

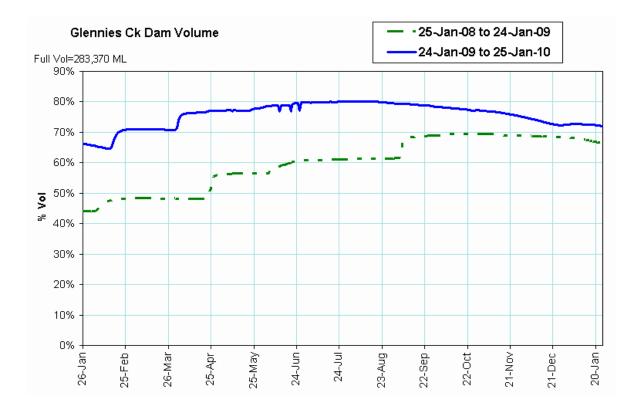


Figure A5: Glennies Creek Dam Volume

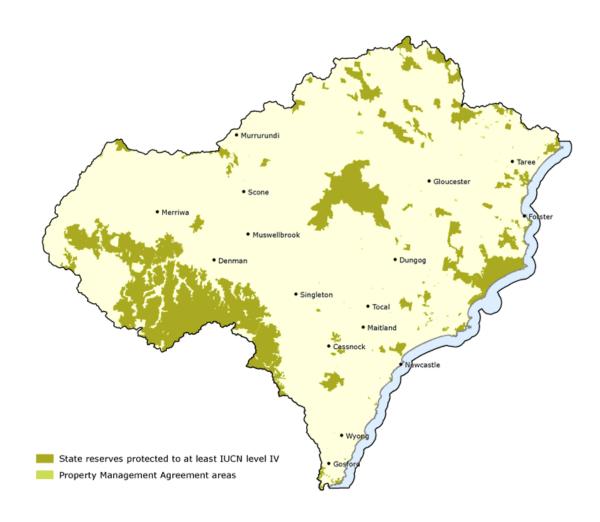
Areas of Significance and Conservation Value

There are nearly 1,400,000 hectares of National Parks (920,000 hectares), State Conservation Areas (184,000 hectares), Nature Reserves (290,000 hectares) and Island Nature Reserves (1,038 hectares), which are wholly or partially located in the Hunter Region.

These are listed in Table A5 below.

Table A5: National Parks, State Conservation Areas, Nature Reserves and Island Nature Reserves.

(Source: DECCW)


National Parks		State Conservation A	Areas	Nature Reserves	
Name	Area (ha)	Name	Area	Name	Area
			(ha)		(ha)
Barrington Tops	74,568	Glenrock	516	Wallabadah	1,132
Myall Lakes	47,540	Lake Macquarie	667	Seal Rocks	0.3
Wollemi	493,594	Barrington Tops	8,446	Wingen Maid	1,077
Woko	8,730	Karuah	74	Seaham Swamp	11
Goulburn River	71,658	Medowie	2,850	Burning Mountain	15
Tomaree	2,357	Polblue	7,810	Cedar Brush	190

National Parks		Nature Reserves		Island Nature Reserves	
Name	Area	Name	Area	Name	Area
	(ha)		(ha)		(ha)
Yengo	163,385	Moffats Swamp	151	John Gould Island	26
Booti Booti	1,567	Coolongolook	198	Boondelbah Island	9
Ben Halls Gap	3,018	Awabakal	228	Moon Island	1
Coolah Tops	13,767	Camels Hump	545	Little Broughton Island	36
Mount Royal	6,920	Kooragang	2,926	Pulbah Island	69
Towarri	6,074	Camerons Gorge	1,318	Storm Petrel	8
Barakee	4,981	Tingira Heights	18	Bandicoot Island	30
Ghin-Doo-Ee	4,819	Hexham Swamp	900	Regatta Island	102
Wallingat	6,557	Karuah	823	Mills Island	61
Watagans	7,751	Back River	735	Snapper Island	13
Werakata	3,337	Bretti	2,902	Wallis Island	473
Belford	294	Killarney	435	Yahoo Island	46
Wallarah	178	Monkerai	865	Corrie Island	164
Blue Gum Hills		Running Creek	910		
Regional Park	129				
		The Glen	2,750		
		Tomalla	605		
		Wallaroo	2,780		
		Darawank	575		
		Katambuhl	694		
		Mernot	320		
		Tilligerry	508		
		Worimi	1,077		
		Monkeycot	1,612		
		Pambalong	35		
		Black Bulga	1,554		
		Copeland Tops	1,692		

Of significance to Singleton Shire is that the southern section of the LGA extends into the extensive national parks of Yengo and Wollemi (where a remnant group of the very rare Wollemi Pine was discovered).

Nature Reserves in the catchment are shown in Figure A6.

Figure A6: Nature Reserves

Wetlands

Nationally important wetlands in the Hunter Region are listed in Table A6 below.

Wetland	Area	Wetland type(s)
	(ha)	A2 - Sub tidal aquatic beds
		A4 - Rocky marine shores
		 A5 - Sand, shingle or pebble beaches
		 A6 - Estuarine water, permanent waters of estuaries and estuarine
		systems of deltas
Myall Lakes	31,777	 A7 – Intertidal mud, sand or salt flats
•	- ,	 A8 – Intertidal marshes
		 A9 – Intertidal forested wetlands
		 A10 – Brackish to saline lagoons and marshes with one or more
		relatively narrow connections to the sea
		 A11 – Freshwater lagoons and marshes in the coastal zone
		 A12 – Non-tidal freshwater forested wetlands
		 A2 – Subtidal aquatic beds
		A6 – Estuarine water
Port Stephens Estuary	30,253	 A7 – Intertidal mud, sand or salt flats
	,	A8 – Intertidal marshes
		A9 – Intertidal forested wetlands
		A2 – Subtidal aquatic beds
		A6 – Estuarine water
Wallis Lakes and adjacent estuarine islands	8,556	 A7 – Intertidal mud, sand or salt flats
		 A8 – Intertidal marshes
		 A9 – Intertidal forested wetlands
		 A4 – Rocky marine shores
		 A5 – Sand, shingle or pebble beaches
		■ A6 – Estuarine water
Kooragang Nature Reserve	2,926	 A7 – Intertidal mud, sand or salt flats
		 A8 – Intertidal marshes
		 A9 - Intertidal forested wetlands
		 A11 – Freshwater lagoons and marshes in the coastal zone
		■ A6 – Estuarine water
		 A8 – Intertidal marshes
		 A9 – Intertidal forested wetlands
		■ B4 – Riverine floodplains
Salt Ash Air Weapons Range	2,790	 B9 – Permanent freshwater ponds (<8 ha), marshes and swamps
	•	on inorganic soils
		■ B10 – Seasonal/intermittent freshwater ponds and marshes on
		inorganic soils
		■ B13 – Shrub swamps
		B14 – Freshwater swamp forest
Barrington Tops Swamps	1,500	 B15 – Peat lands; forest, shrub or open bogs
Shortland Wetlands Centre	.,- • •	A11 – Freshwater lagoons and marshes in the coastal zone
Chichard Wollands Contro		A12 – Non-tidal freshwater forested wetlands
		ATE NOTERIAL TESTIMATE TOTESTED WELIATIOS

Table A6: Nationally Significant Wetlands - Hunter Region

(Source: A Directory of Important Wetlands in Australia, 2001)

There are no known wetlands of significance in the Singleton LGA. Refer Figure A7 below.

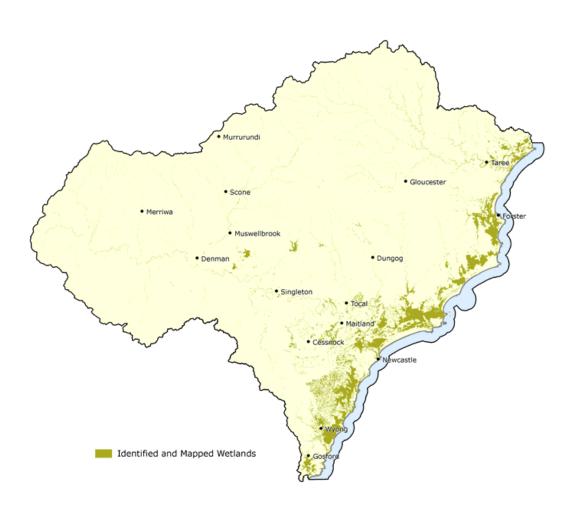


Figure A7: Identified Wetlands

Aboriginal Heritage

The Hunter Catchment is located within or partly within four (4) Regional Aboriginal Land Council areas; primarily Northern and Sydney/Newcastle as well as Central Coast and Wiradjuri. There are seven (7) Local Aboriginal land Councils represented within or partly within the region; Awabakal (Newcastle), Karuah (Karuah), Mindaribba (East Maitland), Walhallow (Quirindi), Wanaruah (Muswellbrook), Worimi (Tanilba Bay) and Windradyne (Bathurst).

There are no "Declared Aboriginal Places" in Singleton Shire. (Source: DECCW; AHIMS database).

The DECCW database does not represent the totality of sites across the State.

There are undoubtedly, "intangible" sites and places of high sensitivity and significance to Aboriginal communities which may not be recorded on the database

Within Singleton Shire, the following initiatives are in place:

- development of a "Working in Partnership Program", by the establishment of an Upper Hunter Valley Regional Partnership Committee;
- creation of the Aboriginal Development Consultative Community in 2006. This is a partnership between the Upper Hunter Valley Aboriginal Community and Coal & Allied;

g. Vegetation

There are five (5) general native vegetation formations in the Hunter Region:

- Closed Forest or Rainforest The main types of rainforest within the Hunter Region are sub-tropical (in deep valleys, south to easterly aspect, lower altitude, richer soils), warm temperate (higher altitude, less favourable areas), cool temperate (higher altitudes, characterised by the presence of Nothofagus Moorei Antarctic Beech), and dry (sheltered situations in adverse sites such as rocky outcrops or areas with low rainfall).
- **Tall Open Forest** Occurring in higher rainfall areas on good soils, along the coast, on the lowlands of the valley, and in some of the lower mountain areas.
- Open Forests and Woodlands Occurring throughout the Region and including various Eucalypt types with varying understories of shrubs, grasses and ferns.
- Heathland Occurring near the coast on exposed coastal sands, dune systems, headlands, and on inland areas that are exposed, seasonally wet and poorly drained, or on skeletal soils.
- Sedgeland and Wetlands Including riverine, estuarine and coastal habitats, such as swamps and water-logged areas in the lower reaches of the Hunter River and creeks draining into Lake Macquarie, Port Stephens and Myall Lakes. Grasslands occur throughout the Region.

There are approximately 3,497 vascular plant species in the Hunter, Central and Lower North Coast region of NSW. (Source: DEC Atlas Data).

Within the Singleton Shire, there are 8 vegetation species listed as vulnerable or threatened.

Common Name & Type	Scientific Name	Level of Threat
Narrow Leaf Bottlebrush	Callistemon linearifolius	Vulnerable
(Shrub)		
White flowered wax plant	Cynanchum elegans	Endangered
(Climber)		
Darwinia peduncularis (Shrub)	Darwinia peduncularis	Vulnerable
Darwinia peduncularis - (Tree)	Eucalpytus fracta	Vulnerable
Slaty Red Gum (Tree)	Eucalyptus glaucina	Vulnerable
Olearia cordata (Shrub)	Olearia cordata	Vulnerable
Hairy Geebung (Shrub)	Persoonia hirsute	Endangered
Illawarra Greenhood (Orchid)	Pterostylis gibbosa	Endangered

The historical and existing extents of vegetation in the Hunter Catchment are shown in Figures A8 and A9 below.

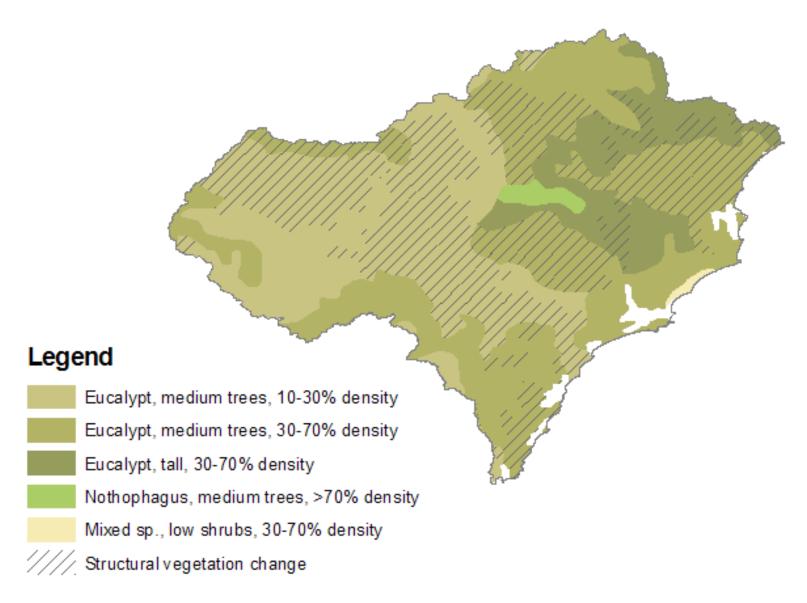


Figure A8: Historical Vegetation in the Hunter Catchment

(Source: Hunter Central Rivers CMA)

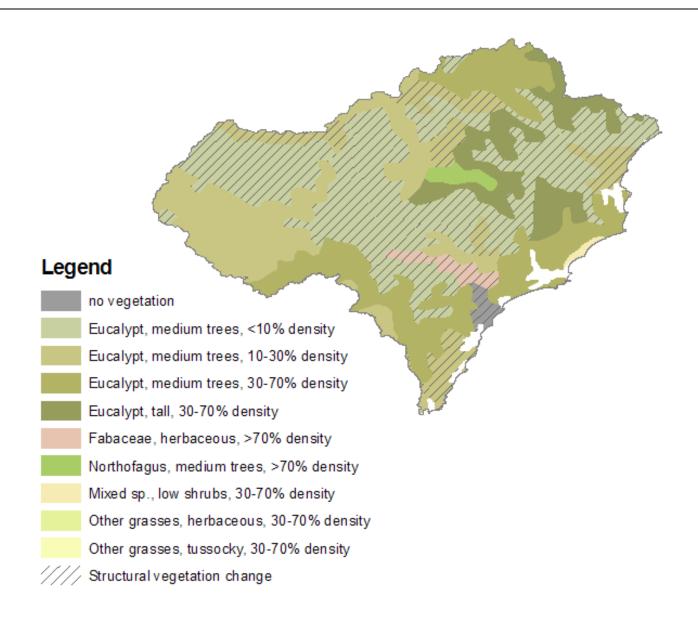


Figure A9: Existing Extents of Vegetation in the Hunter Catchment

(Source: Hunter Central Rivers CMA)

DLM Environmental Consultants Pty Ltd

h. Land Use

The Hunter Valley is an area of economic importance to New South Wales, particularly with respect to coal mining, power generation and agriculture.

Nearly 100 million tonnes of coal is exported every year. (Source: Hunter Valley Research Foundation).

The principal land uses in Singleton Shire include;

- → power generation;
- → agriculture (particularly vineyards);
- manufacturing;
- support industries and commercial enterprises.

The following are the six (6) general types of landuse in the Singleton LGA:

- → commercial

Land uses in the Hunter region are shown in Figure A9.

Potential Issue:

From a water supply perspective, the high consumption of water by mining is a potential issue for the resource within the catchment and, potentially for Council, in terms of possible increases in demand.

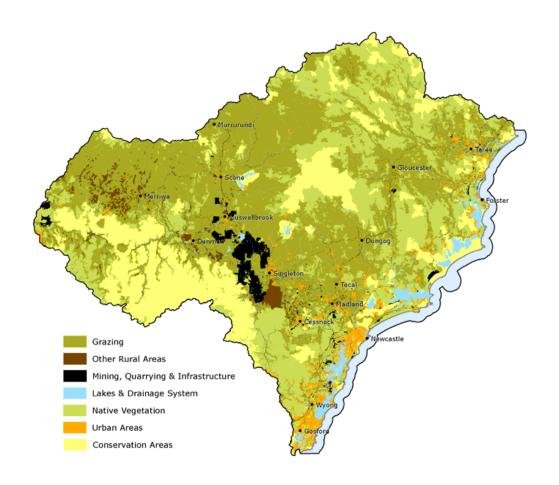


Figure A9: Land Uses in the Hunter Region

i. Flooding & Stormwater Management

Singleton was subjected to a major flooding event in 1955, which brought on the subsequent construction of the Town levee in 1963.

The 1955 Flood was adopted by Council as the flood standard for building and development controls.

In 1988, Council undertook a review of flood studies and reports for the Singleton area and prepared a Development Control Plan (DCP).

The DCP recommended the preparation of a Floodplain Management Plan.

<u>Data Gap & Potential Issue (for Council)</u>: Completion of Floodplain Management Plan

Council completed its Urban Stormwater Management Plan in 2003.

This document should be reviewed and updated.

The Flood Inundation Plan for Singleton is included as Figure A10.

<u>Data Gap & Potential Issue (for Council)</u>: Review Stormwater Management Plan

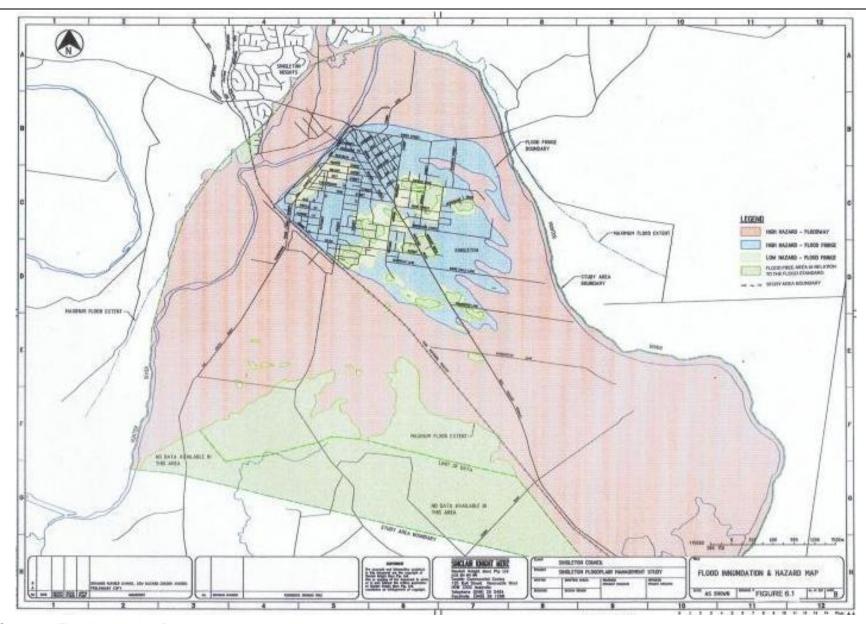


Figure A10: Singleton Flood Inundation Plan

j. Hunter-Central Rivers Action Plan

The area and location of the Hunter-Central Rivers CMA are shown in Figure A11 below.

The Catchment Management Authority published its "Action Plan" in 2006, addressing a range of Catchment and Management Targets, including:

Table A7: Hunter-Central Rivers Catchment Targets

Management Targets to be Achieved by 2015			
Asset	Target		
Biodiversity and Native Vegetation	 Protect an additional 31,000 ha of native vegetation Regenerate 25,500 ha of native vegetation Treat 2,400 ha of weed affected lands Implement priority recovery actions on 800 ha Manage an additional 52,000 ha of landscapes having physical, cultural or spiritual significance to aboriginal people Protect an additional 1,100 km of native riparian vegetation Regenerate 550 km of degraded native riparian 		
Water and Aquatic Ecosystems	 vegetation Protect an additional 4,600 ha of wetlands Enhance 2,600 ha of wetlands Restore native fish passage to 60 instream barriers Stabilise 125 km of unstable or degraded stream channels and estuarine shorelines Improve habitat to 200 km of stream channels Manage 75 estuarine floodgates to increase tidal movement Protect an additional 21,000 ha of priority marine habitat Enhance 130 km of vegetation along coastal lake shorelines 		
Land Management	 Enhance 250 km of marine shorelines Treat animal pests over 31,000 ha Manage 200 km of roads that affect sensitive areas using current best practice erosion and sediment control Revegetate 8,400 ha of highly erodible soils Stabilise 800 ha of actively eroding soils Revegetate 1,200 ha of salinity recharge areas with deeprooted vegetation Improve nutrient management on 500 ha of land Stabilise 150 ha of salt affected areas Implement sustainable grazing management practices on an additional 19,000 ha of grazing land Develop and implement property plans for an additional 25,000 ha 		

Management Targets to be Achieved by 2015		
Asset	Target	
Land Management (cont'd)	 Maintain 420 Lower Hunter Valley Flood Mitigation Scheme structures Retrofit 620 ha of existing developed areas with current best practice urban stormwater management Improve the management of 120 sewage management 	
	 systems Treat an additional 5,000 ha of acid sulphate soils Revegetate 240 ha of degraded dune systems 60 industry groups develop, adopt and audit an Environmental Management System. 	

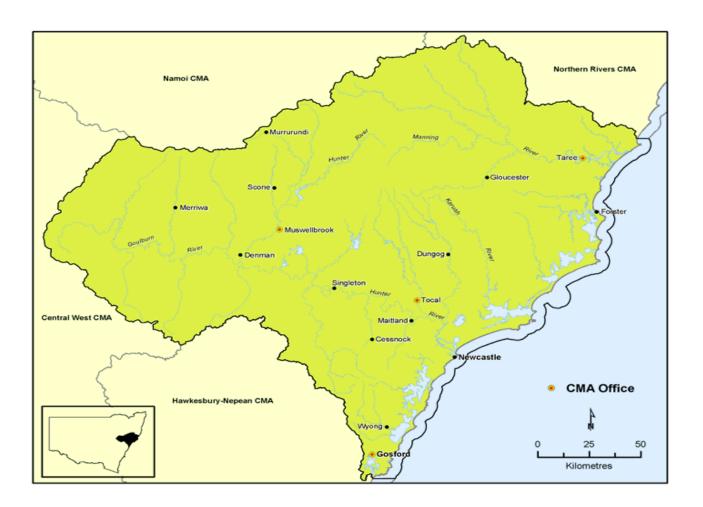


Figure A11: Hunter-Central Rivers CMA area

k. Environmentally Sensitive Areas

The Department of Environment, Climate Change and Water has determined "Environmentally Sensitive Zones" across NSW.

These environmentally sensitive zones (ESZs) are defined as:

- Regions immediately surrounding sensitive receptors (eg. Rivers, drinking water bores)
- Regions on or near vulnerable groundwater
- Regions of recognised environmental significance

The map of ESZs for Singleton is shown below. **Most of the Singleton urban area is impacted by ESZs.**

Summary of Potential Issues

Potential issues identified under this catchment perspective review are:

- Increasing customer base resulting in increases in water consumption & wastewater generation over the next 30 years.
- Potential for urban salinity with potential impacts on water & sewerage infrastructure
- Potential for groundwater recharge and/or pollution from septic tank systems and leaking wastewater lagoons
- Potential gully erosion & stream erosion
- Eight (8) vegetative species listed as vulnerable or endangered
- High current & future water consumption by the mining industry, with potential demand impacts on the water resource
- Lack of a Floodplain Management Plan (not an Urban IWCM Issue)
- Need to review and update the Stormwater Management Plan (not an Urban IWCM Issue)

A map of the ecological and environmental assets in Singleton Shire is attached as Figure A12. (Source: NSW NPWS)

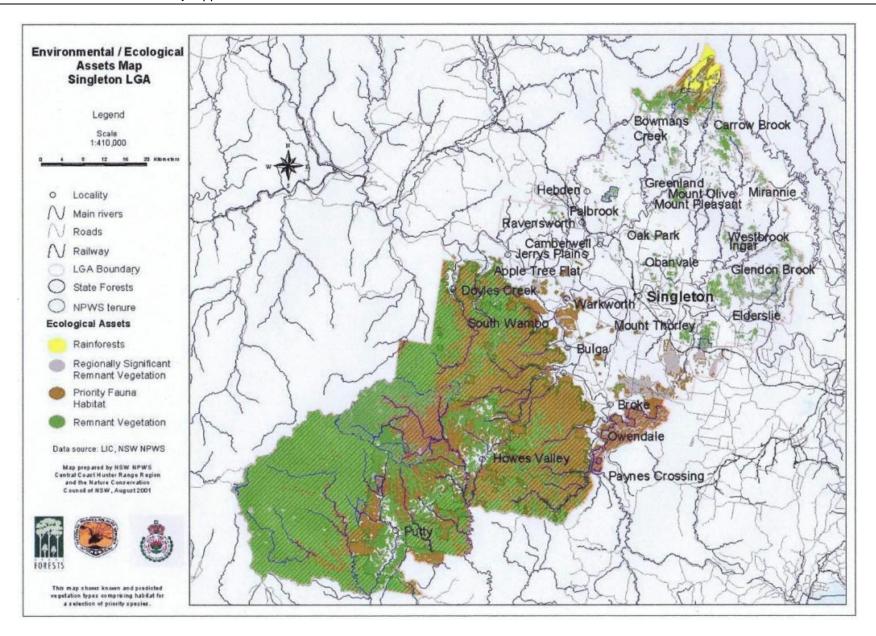


Figure A11: Environmental/Ecological Areas - Singleton LGA (Source: NPWS)

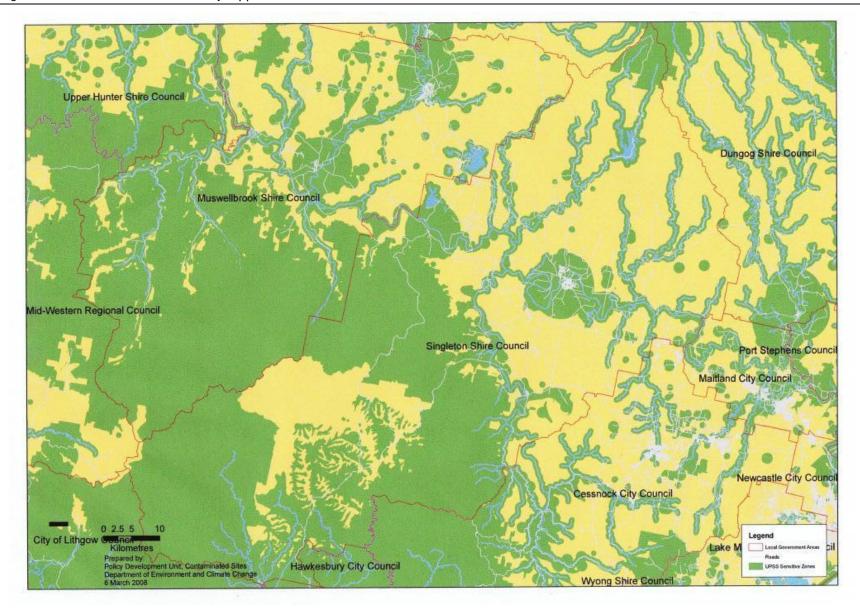


Figure A12: Environmentally Sensitive Areas - Singleton (Source: DECCW)

3A. WATER RESOURCES CONTEXT

a. Hunter Regulated River Context – Water Sharing Plan

General

The Hunter Regulated River water Source comprises:

- a) the bed and banks of all rivers, from the upstream limit of Glenbawn Dam water storage downstream to the estuary of the Hunter River, and from the upstream limit of Glennies Creek Dam water storage downstream to the junction with the Hunter River, and
- b) the unconsolidated alluvial sediments underlying the waterfront of all rivers which have been declared by the Minister to be regulated rivers, except those unconsolidated alluvial sediments within one metre of works taking water pursuant to licenses issued under Part V of the Water Act 1912 of their equivalent aquifer access licenses issued under the Water Management Act 2000.

The Hunter Regulated River Water Source is also divided into three (3) management zones (Zone 1, Zone 2, Zone 3). The zones are defined from a single common point, which is the junction of Glennies Creek with the Hunter River. This is the cadastral junction of the Parishes of Vane (County of Durham), Auckland (County of Durham) and Lemington (County of Hunter). Specifically, the common boundary point for the management zones is:

The regulated rivers included in the Water Sharing Plan include (inter alia):

- Glennies Creek from the upper limit of the Glennies Creek Dam water storage, including all tributaries to the storage (named and unnamed) up to high water mark of the storage, downstream to the confluence of Glennies Creek with the Hunter River;
- Hunter River from the upper limit of Glenbawn Dam water storage, including all tributaries to the storage (named and unnamed) up to high water mark of the storage, downstream to a point adjacent to the eastern boundary of Lot 2, DP 1012258. Parish of Maitland, County of Northumberland on the southern bank of the River and adjacent to a point 150 m downstream of the western boundary of Lot 1, DP 856702, Parish of Middelhope, County of Durham on the northern bank of the River, 1400 metres upstream of Oakhampton rail bridge.

Glennies Creek Dam is the source of Singleton's water supply. The categories and share components of access licenses under this Water Sharing Plan are shown in Table A8.

Table A8: Water Access Licence Categories & Locations

Access Licence Category

Major utility

36,000 megalitres per year
Local water utility

10,832 megalitres per year
Domestic and stock

1,738 megalitres per year

High security 22,159 unit shares
General security 128,163 unit shares
Supplementary water 49,000 unit shares

At the commencement of the Plan, in July 2004, domestic and stock water extractions under basic landholder rights were estimated to be 5,515 ML/year. There are currently no extractions for native title rights form the water source. However, both forms of extraction may increase during the term of the Plan.

The water supply system is managed to ensure sufficient water is set aside to supply basic landholder rights.

Singleton Shire Council has a Town entitlement of 5,000 ML in the Local Water Utilities category, which represents 2.0 % of total allocations.

[Council also holds Groundwater entitlements of 4,050 MI (which have not been accessed to date)]

The Plan was suspended in December 2006, since the extremely dry conditions were threatening the security of water supplies to Macquarie Generation.

Overall the Plan establishes a long term average annual extraction limit estimated as 217, 000 ML per year (out of an annual natural average flow estimated at 1,042,000 ML) and identifies water above this limit (approximately 80 % of flows) as planned environmental water.

Historically, water use in the Hunter Regulated River system has been substantially lower than the limit set by the Plan; as not all of the entitlement available under existing licenses is fully used. Since the Plan was implemented in 2004, the maximum regulated system water use has been 157,000 ML in 2005-2006.

A plan of the Hunter Regulated River Water Source is presented in Figure A13 below.

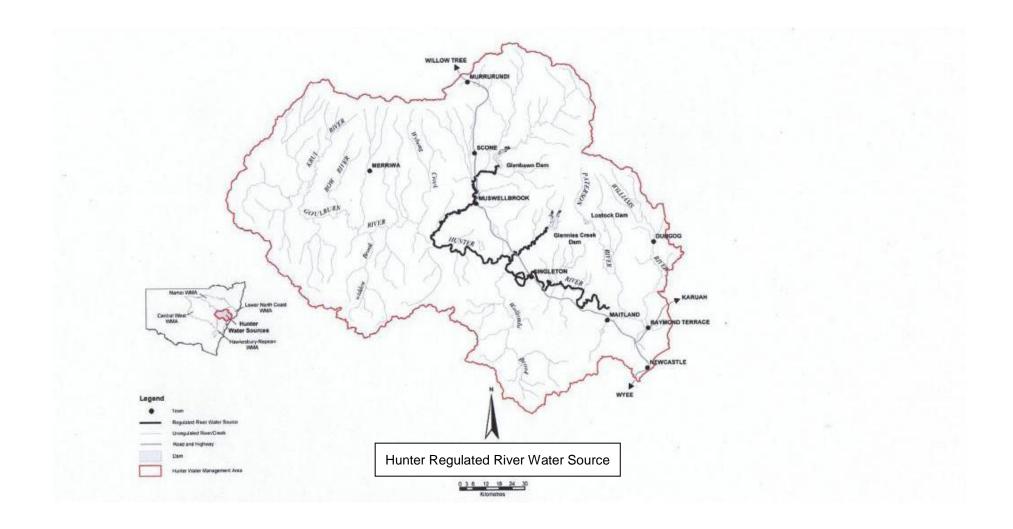


Figure A13: Hunter Regulated River Water Source

(Source: CMA)

b. Water Quality Objectives

Catchment water quality and river flow objectives were established by the Environment Protection Authority (EPA), now within the Department of Environment, Climate Change and Water (DEECW).

Key indicators and numerical criteria for the Water Quality Objectives listed are shown in Table A9.

Table A9: Water Quality Objectives (Major Regulated Rivers)

	Criteria	Objective			
*	Protection of Aquatic Ecosystems	Maintaining or improving the ecological condition of water bodies and riparian zones over the long term			
₽	Secondary Contact Recreation	Maintaining or improving water quality for activities such as boating and wading, where there is a low probability of water being swallowed			
AE	Primary Contact Recreation	Maintaining or improving water quality for activities such as swimming in which there is a high probability of water being swallowed			
₹ 3	Livestock Water Supply	Protecting water quality to maximise the production of healthy livestock			
	Irrigation Water Supplies	Protecting the quality of waters applied to crops and pasture			
	Drinking Water	Refers to the quality of drinking water drawn from the raw water source before any treatment			
T	Homestead Water	Protecting water quality for domestic use in homesteads including drinking, cooking and bathing			
	Aquatic foods (cooked)	Protecting water quality so that it is suitable for the production of aquatic foods for human consumption			
•	Visual amenity	Aesthetic qualities of water			

Key indicators and numerical criteria for the principal Water Quality Objectives listed are shown in Table A10.

Table A10: Water Quality Objectives: Indicators & Criteria

INDICATOR	NUMERICAL CRITERIA (Trigger Values)			
Aquatic Ecosystems				
Total Phosphorus	0.05 mg/L			
Total Nitrogen	0.5 mg/L			
Chlorophyll-a	0.005 mg/L			
Turbidity	6 – 50 NTU			
Salinity (EC)	125 – 2200 μS/cm			
Dissolved Oxygen	85 – 100%			
pH	6.5 – 8.5			

Secondary Contact Recreation	
Faecal Coliforms	1000 cfu/100 mL
Enterococci	230 per 100 mL
Algae & BGA	15,000 cells/mL

Primary Contact Recreation	
Turbidity	Approx. 6 NTU
Faecal coliforms	150 cfu/100 mL
Enterococci	35 per 100 mL
Protozoa	Absent
Algae & Blue Green Algae	15,000 cells/mL
Chemical Contaminants	None

<u>Livestock</u>	
Faecal Coliforms	100 cfu/100 mL
Algae & BGA	11,500 cells/mL
Salinity	3000 – 10,000 μS/cm

Irrigation Water Supplies			
Algae & Blue Green Alagae	Not visible		
Salinity	280 μS/cm		
Thermotolerant Coliform	Varies – depending on whether food or non-food crops (Refer ANZECC Guidelines)		

Drinking Water	All drinking water to comply with Australian				
	Drinking Water Guidelines				
Faecal coliforms	0				
Salinity	800 - < 1500 μS/cm				
pH	6.5 – 8.5				
Dissolved Oxygen	6.5 mg/L				

Homestead Supplies	
(Domestic & Stock)	
Faecal coliforms	0
Total Dissolved Solids	500 – 1000 mg/L
Turbidity	5 NTU
рН	6.5 – 8.5

Water quality data for the Hunter River at Singleton is presented in Table A11 below.

Table A11: Water Quality Data

Hunter River

							•						
	At Glenbawn				At Aberdeen			At Edinglassie					
Parameter	Units	Sample	Ave	Max	Min	Sample	Ave	Max	Min	Sample	Ave	Max	Min
		Period				Period				Period			
Bluegreen algae	Cells/mL	1999-'02	1126	3986	0	'99-'03	631	5336	0	-	-	-	-
Total Alkalinity	mg/L	1999	92	223	0	'99	193	235	159	-	-	-	-
Ammonia N	mg/L	'99-'01	0.14	10.0	0.01	'99-'03	0.01	0.06	0.01	-	-	-	-
Chlorophyll a	μg/L	'99-'02	3.4	7.0	1.0	'99	2.67	8.0	1.0	-	-	-	-
EC	μS/cm	1999	300	361	226	,00-,03	285	371	110	'02-'06	387	566	260
NO_x	mg/L	'99-'02	0.31	0.46	0.012	'99-'03	0.09	0.46	0.01	'04-'06	1.69	11.75	0.08
Nitrate N	mg/L	1999	0.014	0.016	0.012	'99-'02	-	-	-	2002	0.23	0.30	0.20
Total N	mg/L	'99-'02	0.33	1.10	0.19	'99-'02	0.31	0.85	0.13	-	-	-	-
Ortho P	mg/L	'99-'02	0.02	0.32	0.01	'99-'02	0.02	0.18	0.01	-	-	-	-
Total P	mg/L	'99-'02	0.04	2.10	0.02	'99-'02	0.03	0.06	0.02	'04-'06	0.43	2.40	0.01
Turbidity	NTU	1999	23.7	25.0	4.4	'01-'03	6.7	39.0	0.9	'04-'06	22.4	159.0	5.7
рН	units	1999	8.5	8.8	8.3	'01-'03	8.3	9.2	7.5	'02-'06	8.3	9.1	7.8
Total coliforms	CFU/mL	-	-	-	-	-	-	-	-	'02-'06	2007	2419	22
Faecal coliforms	CFU/mL	-	-	-	-	-	-	-	-	'02-'06	236	2419	10
Hardness as CaCO ₃	mg/L	-	-	-	-	-	-	-	-	'02-'06	166.3	223.0	128.0
TDS	mg/L	-	-	-	-	-	-	-	-	'04-'06	179.2	250.0	124.0

4A. CURRENT URBAN WATER SYSTEMS

a. Overview

Singleton Shire Council, as the Local Water Utility, provides water supply and sewerage services for a population of nearly 18,000 people (Performance Report, 2008/09), including water supplies to the coal mining industry, the army base and an abattoir.

Council also provides water supply services to a number of Villages, namely:

- Broke Village
- Jerrys Plains Village
- Bulga Village
- Camberwell Village

Potential Issue: These Villages are not currently sewered.

b. Business Objectives & Levels of Service

Council is currently measuring its performance against Objectives and Levels of Service established as part of the 1998/99 business planning process. Strategic Business Plans are meant to be revisited and updated every 5 years.

The current relevance of the Objectives and Levels of Service are, therefore, questioned.

[Council is currently proceeding with the development of a new, 2010 Strategic Business Plan for Water Supply and Sewerage Services and has engaged consultants to assist with this process. A workshop involving Council and senior staff was conducted in April 2009 to commence the process].

The existing Objectives are presented here for information only and are discussed in more detail in Appendix C: IWCM Related Targets, Obligations, Responsibilities and Requirements.

Table A12: Water Supply: Business Objectives

Focus	Objective
Areas	
Customer	Meet Levels of Service to which customers have agreed and can afford
Service	Establish affordable service areas and solutions
	Increase public awareness of water wastage
	4. Establish 10 year pricing policy
	5. Keep the community informed and be responsive to its needs
	Community consulted and considered on all major expenditure decisions
Environment	7. Manage the system to prevent adverse environmental impacts
	8. Promote and assist establishment of industry and developers in Singleton Shire
Asset	Ensure reliable, secure and cost effective service using latest technology
Management	10. Ensure the system provides levels of service agreed
	11. Provide a Capital Works Program which supplies system needs
Human	12. Maintain a capable, motivated and skilled workforce
Resources	
Business	13. Evaluate options to achieve capital and maintenance programs with affordable rates and
	relatively low levels of reserves
	14. Set up the water fund as an independent business.

Table A13: Water Supply: Levels of Service

Description	Unit	1998/99 Target	Comments/Achievement		
		Levels of Service			
Availability of Supply					
Normal Quantity Available					
Domestic Peak day	Litres/tenement/day	4,000	Yes – currently 1900L/tenement/day		
Domestic Annual	Kilolitres/tenement/year	250-350 (60%) 500 (Average)	Yes – domestic annual usage: 290 kL/tenement /year		
Peak to Average consumption ratio	-	3.9			
Fire Fighting					
Compliance with Building Code of Australia and NSW Fire Brigade requirements	% area served	95% Target: Increased standard in CBD ie. 2x22L/s	98% achieved		
Pressure					
Minimum pressure when conveying 0.15 L/s/tenement	Metres head	15	100%		
Maximum static pressure	Metres head	120	100%		
Consumption Restrictions in					
Droughts	0/	1 1 20			
In accordance with	% normal use	In accordance with	1 occurrence in last 12 years		
Council's Drought Management Plan		targets set in Drought Management Plan			
Average duration	months per 10 year	n/a			
restrictions	period				
Average frequency of	Number of times/10	n/a			
restrictions	year period				
Supply Interruptions					
to Consumers		40 00 00			
Temporary Supplies		to all essential			
during planned		services and			
interruptions		commercial areas			
Planned:	dovo	. 4	050/		
 Notice given to domestic customers 	days	>1	95%		
- Notice given to	days	>1	95%		
commercial customers					
-Notice given to	days	>1	95%		
industrial customers					
-Maximum duration of interruption	hours	<6	100%		
-Number of interruptions	number per customer	<1 (excl. system break	Estimated at 90%		
	per year	downs or system	achievement (due to		

		development (eg	subdivisional activity)
		connecting new subdivisions etc)	
Description	Unit	1998/99 Target	Comments/Achievement
		Levels of Service	
Unplanned:			
Target is for less than			NA
30 houses to be			
affected per failure.			
- Maximum duration	hours	4	NA
- Maximum number per	times	4	NA
two years			
Total number of	number per year per	10	NA
interruptions	1000 connections		
Response Times			
(Defined as maximum			
time to have staff onsite			
or to investigate			
problem or answer			
inquiry)			
Supply Failure			
During working hours	minutes	30	100%
Out of working hours	minutes	30	100%
Minor Problems and			
general Inquiries			
Oral inquiry		30 minutes to 1 day	90% (estimate)
Written inquiry		10 days	95% (estimate)
Note: Times apply for			
95% of occasions			
Service Provided			
Time to provide an	working days	5	85%
individual connection to			
water supply serviced			
area (90% of times)			
Water Quality			
Microbiological Quality			
Coliforms	number per 100 ML	0	96% (2005 – 2009)
Faecal Coliforms	number per 100 ML	0	100%
Current long term	% complying	100	98%
microbiological	, o complying		5576
compliance (thermo			
tolerant coliforms)			
Note: In accordance			
with the 1996 NHMRC			
guidelines (Now 2004			
Guidelines)			
Physical Results			
рН	-	6.5-8.5	Yes
Colour	True Colour Units	<5	Yes
Turbidity	Nephelometric	<0.2	95%

	Turbidity Units		
Taste and Odour	Complaints per 1000	5	NA
	customers per year		
Dirty Water	Complaints per 1000	5	NA
	customers per year		
Aesthetics, Disinfection			
Chemical – Inorganic			
Results			
Iron	mg/L	<0.03	100%
Manganese	mg/L	<0.01	75%

It should be noted that these Levels of service are targets that Singleton Shire Council set out to achieve.

They were never intended to form a formal customer contract

Table A14: Sewerage: Business Objectives

Focus	Objective
Areas	
Customer	Meet Levels of Service to which customers have agreed and can afford
Service	Establish affordable service areas and solutions
	3. Establish 10 year pricing policy
	4. Reduce illegal connections in 'old' part of town
	5. Promote and enforce good operational procedures for trade waste dischargers
	Keep the community informed and be responsive to its needs
	7. Community consulted and considered on all major expenditure decisions
Environment	8. Manage the system to prevent adverse environmental impacts and use waste for
	beneficial purposes
	Promote and assist establishment of industry and developers in Singleton Shire
Asset	10. Ensure reliable, secure and cost effective service using latest technology
Management	11. Ensure the system provides levels of service agreed
	12. Provide a Capital Works Program which supplies system needs
Human	13. Maintain a capable, motivated and skilled workforce
Resources	
Business	14. Evaluate options to achieve capital and maintenance programs with affordable rates
	and relatively low levels of reserves
<u> </u>	15. Set up the sewer fund as an independent business.

Table A15: Sewerage: Levels of Service

Description	Unit	1998/99 Target Levels of Service	Comments/Achievement
Availability of Service			
extent of area serviced	serviced area	Target is to provide appropriate sewer services to the maximum extent possible	Extensions to services being allowed for in new SBP
Frequency of System Failures (1)			
Category One			
Failure due to rainfall and deficient capacity	number/year	Currently: Sewers overflow in Dunnolly PS catchment (0-2 times per year), but there are no failures	100% compliance
Category Two			
Failures due to pump or other breakdown include power failure	number/year	Zero (there are currently two per year in the small temporary SPS in Hunterview, which is to be replaced)	100% compliance
Category Three			
Failures due to blockages	number/year	Currently: 100 (improved from 200) Target: 50	90% compliance (estimate)
Response Times to System Failure			
(Defined as the maximum time to have staff onsite to commence rectification after notification)			
Priority One			
(Major spill, significant environmental or health impact, or affecting large number of consumers i.e. a major main)			
- Response time during working hours:	minutes	30	100% compliance
- Response time after hours:	minutes	30	100% compliance
Priority Two			
(Moderate spill, some environmental or health impact, or affecting small number of consumers i.e. other			
mains)			

Description	Unit	1998 Serv		arget	Levels of	Comments/Achievement
- Response time during						100% compliance
working hours:	minutes	30				
- Response time after						100% compliance
hours:	minutes	60				
Priority Three:						
(Minor spill, little						
environmental health						
impact, or affecting a						
couple of consumers)						
-Response time during						
working hours:	minutes	30				60% compliance
- Response time after						
hours:	minutes	60+				60% compliance
Response Times to						
General or Minor						
Customer						
Complaints and Inquiries (1)						
- Written complaints	day	10				95% (estimate)
- Oral complaints	day	1	inutoc t	o 1 do	y (depending	90% (estimate)
- Oral complaints	uay	on na		.o i ua	y (depending	90 % (estimate)
Note: Times for 95% of						
complaints						
Odour Complaints						
- Treatment Works	number/year	Zero				100% compliance
- Pumping Stations	number/year	8 (Bo	urke St	SPS)		100% compliance
Discharge Licence Conditions	(Percentiles)	50%	80%	90%	100%	
-Quantity	kL/day				6,000	100% compliance
- Biochemical Oxygen	,				<u> </u>	
Demand	mg/L	20	-	30	35	98% (2004 – 2008)
- Non Filterable	mg/L	20	-	30	35	94% (2004 – 2008)
Residue	J					,
- Oil and Grease	mg/L				10	94% (2004 – 2008)
- pH					6-9	100% (2004 – 2008)
- Phosphorus	mg/L				10	-
- Total Nitrogen	mg/L	-	15	-	-	98% (2004 – 2008)
- Faecal Coliforms	no/100 ML				No limit	·
(geometric mean)						

Note: (1) Failure is defined as a sewer overflow from the collection system or treatment works.

These Levels of Service are targets that Singleton Shire Council aims to achieve. They are not intended to form a formal customer contract.

<u>Potential Issue</u>: Confirm revised Levels of Service relevant to the current management & operation of the Water Supply & Sewerage Businesses.

c. Land Uses in Singleton & Associated Licensed Activities

The principal sources of economic growth and development in the Singleton LGA include:

- → Power Generation;
- Abattoir;
- Agricultural production;
- Agricultural produce processing;
- Manufacturing;
- → Small business enterprises;
- Support industries and commercial enterprises.

A total of 35 Licenses have been issued by DECCW, under the Protection of the Environment Operations Act, 1997 (POEO) in the Singleton Local Government Area. Of these, only four (4) are located in the Town of Singleton.

The four (4) Licenses issued in Singleton Town are presented in Table A16.

Table A16: Licences Issued by POEO in Singleton

Licence Number	Name	Address	Status	Non- compliances
11279	Shellden Pty Ltd (Abattoir)	Old Northern Road, Cnr New England & Golden Highways WHITTINGHAM 2330	Issued	Yes, 2002 (Failure to monitor)
12728	Singleton Council (Animal accom.)	Gresford Road SINGLETON 2330	Issued	No
3088	Singleton Council (STP)	Army Camp Road SINGLETON 2330	Issued	Yes, 1999, 2000, 01, 02, 03, 04, 06 & 07
5927	Singleton Council (Waste Disposal)	Dyrring Road SINGLETON 2330	Issues	Yes, 2000, 02,03, 05, 06, 07 & 08

Table A17: Licences Issued within the Shire, but outside the Town

Licence Number	Name	Address	Status	Non- Compliances
7056	Applied Soil Technology Pty Ltd	Elderslie Road MITCHELLS FLAT 2330	Issued	Yes, 2002, 03, 05
11879	Ashton Coal Operations Pty Ltd	Glennies Creek Road & New England Highway CAMBERWELL 2330	Issued	Yes, 2003, 04, 05, 06, 07 & 08
7654	Bio-Recycle Australia Proprietary Ltd	New England Highway MUSWELLBROOK 2333	Issued	No
563	Bulga Coal Management Pty Ltd	Broke Road SINGLETON 2330	Issued	Yes, 1999, 2000, 01, 02, 03, 04, 05, 06, 07 & 08
3390	Camberwell Coal Pty Ltd	Bridgman Road SINGLETON 2330	Issued	Yes, 1999, 2000, 01, 02, 03, 04, 05, 06 & 07
640	Coal & Allied Operations Pty Ltd	Lemington Road SINGLETON 2330	Issues	Yes, 2001, 02, 03, 04, 05, 06, 07 & 08
37	Cumnock No.1 Colliery Pty Ltd	Off Old New England Highway RAVENSWORTH 2330	Issued	Yes, 2003, 04, 05
12325	Downer EDI Mining Blasting Services Pty Ltd	8 Melva Place SINGLETON 2330	Issued	No
12158	Dyno Nobel Asia Pacific Pty Ltd	186 Long Point Road WARKWORTH 2330	Issued	Yes, 2007
12159	Dyno Nobel Asia Pacific Pty Ltd	5 Woodlands Road MOUNT THORLEY 2330	Issued	No
12614	Envirogen (Oaky) Pty Ltd	Cnr Nobles Land & Middle Falbrook Road SINGLETON 2330	Issues	Yes, 2008 & 09
Licence	Name	Address	Status	Non-

Number 7622	Glennies Creek Coal Management	640 Middle Falbrook Road SINGLETON 2330	Issued	Compliances Yes, 2002
7390	Pty Ltd Hebden Quarries Pty Ltd	Lot 5 Hebden Road HEBDEN 2330	Issued	Yes, 2003 & 05
2122	Macquarie Generation	New England Highway LIDDELL 2333	Issued	Yes, 1999, 2000, 01, 02, 03, 04, 05, 06 & 07
11658	Maticon Pty Ltd	18 Enterprise Crescent SINGLETON 2330	Issued	No
24	Mount Thorley Coal Loading Ltd	Mount Thorley Road, MOUNT THORLEY, VIA SINGLETON 2330	Issued	Yes, 2002 & 04
10620	Mushroom Composters Pty Ltd	Broke Road	Issued	No
11220	Orica Australia Pty Ltd	Pikes Gully Road RAVENSWORTH 2330	Issued	No
5585	Ravensworth Coal Terminal Pty Ltd	Liddell Station Road RAVENSWORTH 2330	Issued	Yes, 2000, 03, 04, 07 & 08
2652	Ravensworth Operations Pty Ltd	Off Lemington Road RAVENSWORTH 2330	Issued	Yes, 2001, 02, 03, 04, 05, 06, 07 & 08
11262	Redbank Project Pty Ltd	112 Longpoint Road WARKWORTH 2330	Issued	Yes, 2002, 03, 04, 05, 06, 07 & 08
10337	Resource Pacific Pty Ltd	Mining Leases CML 1348 & CML 1349 & Part of CML 378 SINGLETON 2330	Issued	Yes, 2001, 07 & 09
3391	Rix's Creek Pty Ltd	Rix's Creek Lane SINGLETON 2330	Issued	Yes, 2001, 02, 03, 04, 05, 06, 07 & 08

Licence Number	Name	Address	Status	Non- Compliances
3141	United Collieries Pty Ltd	134 Jerrys Plains Road WARKWORTH 2330	Issued	Yes, 2004, 05, 06, 07, 08 & 09
529	Wambo Coal Pty Ltd	Jerrys Plains Road WARKWORTH 2330	Issued	Yes, 1999, 2000, 01, 02, 03, 04, 05, 06, 07 & 08
1376	Warkworth Mining Ltd	Putty Road MOUNT THORLEY 2330	Issued	Yes, 2001, 02, 03, 04, 05, 06 & 08
10860	Xstrata MT Owen Pty Ltd	Hebden Road RAVENSWORTH 2330	Issued	Yes, 2001, 02, 03, 04, 05, 06, 07, 08 & 09
12840	Xstrata MT Owen Pty Ltd	Hebden Road RAVENSWORTH 2330	Issued	Yes, 2009
4460	Thiess Pty Ltd	Hebden Road RAVENSWORTH 2330	Issued	Yes, 2001, 02, 03, 04, 05, 06, 07 08 & 09

The non-compliances relevant to this IWCM Evaluation Study relate to the Sewage Treatment Works and these are outlined and discussed more fully in Appendix C: IWCM Related Obligations, Responsibilities and Requirements.

DECCW advises that there are currently no contaminated sites listed for Singleton.

All the above licensed activities for the **Town of Singleton** are subject to a Trade Waste Agreement with Singleton Shire Council.

d. Current Water Supply Services

The Water Supply, Treatment and Distribution systems for Singleton are discussed in detail in **Appendix B: System Boundaries**.

A summary of the water supply services provided by Council is presented below.

Water Supply Service Summary

Key aspects of the water supply service to the town of Singleton are summarised in Table A18 below:-

Table A18: Summary of Water Supply Services

Water Sources: • Glennies Creek Dam

• (Hunter River Regulated source)

Entitlements: • Town Entitlement 5,000 ML/yr

High Security (Mine allocation plus 1939 ML/yr

Mt. Thorley & Jerrys Plains)

High Security
 81 ML/yr

• General Security (Parks, Mt. Thorley) 24 ML/yr

Groundwater entitlement 4,050 ML/yr

Total 11,094 ML

Rainwater Tanks 600 No.

Populations: LGA (2006) Census 21,936

Singleton 13,664

Population supplied with water supply 17,919

services (2008/09 Performance Return)

Population supplied with sewerage 15,009

services (2008/09 Performance Return)

Metered Customers:

(2008/09) Residential 5,839

Non-Residential <u>789</u>

Total 6,628

Total Water Extracted: 2,476 ML

(2008/09)

Authorised Annual 2,414 ML (all potable

Consumption: supply)

(2008/09) (Refer Table A18 below for total water usage)

Unaccounted for Water: 62 ML (2.6%)

(2008/09)

Treated (Potable) Water: Total System : Compliance E.coli 100%

Quality Compliance

(Performance Report

2008/09)

Water Consumption

Details of water consumption in Singleton are summarised in Table A19 below:-

Table A19: Water Consumption Profile

Annual Consumption

Potable Supply

Peak Annual Demand Recorded		3,554 ML (1998)
Peak Month Demands	2009	367 ML (January)
	2008	214 ML (January & December)
	2007	289 ML (January)
	2006	344 ML (January)
	2005	335 ML (December)
	2004	296 ML (January)
	2003	346 ML (January)
	2002	390 ML (January)
	2001	346 ML (January)
	2000	341 ML (February)
	1999	422 ML (January)
	1988	421 ML (March)

Consumptions by User Category (2008/09) [based on water extracted from all sources]

Residential	1,490 ML	(61.7%)
Commercial	428 ML	(17.7%)
Industrial	286 ML	(11.8%)
Rural	41 ML	(1.7%)
Institutional	169 ML	(7.0%)
Public Parks & Open Space	- ML	(0%)
Bulk Sales Unbilled authorised	- ML - ML	(0%) (0%)

Total 2,414 ML

Peak day demands by User Category are not known.

This is a Data Gap

The Demand management modelling carried out as part of this study (Refer Appendix D) indicates that at current rates of consumption, the Water Treatment Plant has surplus capacity beyond the 30 planning horizon of this Evaluation Study.

Water Treatment:-

Singleton operates 1 Water Treatment Plant, namely:-

• Direct Filtration Plant

• Total Capacity: 30 ML/d

• Peak Day Demand: 26.4 ML/d (April 1998)

(Since 1998)

• Peak Day Demand: 25.2 ML/d (December 2001)

(Last 10 years)

• Peak Day Demand: 19.6 ML/d (January 2005)

(Last 5 years)

The peak day demand has been steadily declining since 1998, which will significantly extend the life of the Water Treatment Plant.

The current 2008/09 Peak Day Demand for Singleton Water Treatment Plant (17.2 ML/d) is approximately 51% of the total plant capacity.

Currently, commercial/industrial use accounts for only 29.5% of total consumption.

Water Quality

Water quality produced by Singleton's Water Treatment Plant is typically of high quality. In the period, 2006/07 to 2008/09, the Treatment Plants met all Australian Drinking Water Quality Guidelines for physical, chemical and microbiological criteria (as per TBL Annual Performance Reports) as shown in Table A20 below.

Table A20: Water Quality Compliance Results

Criteria	2006/07	2007/08	2008/09
Physical	100%	100%	100%
Chemical	100%	100%	100%
Microbiological			
• E.coli	100%	100%	100%
Total coliforms	100%	100%	100%

(Source: DWE Performance Reports; 2006/07; 2007/08 & 2008/09)

Water Use Profile

Singleton Council does not have any information on residential household and external use profiles. External use can be deduced from the daily water consumption figures (ie. summer use – winter use). This equates to 60% residential use for external purposes (gardens, lawns and swimming pools) in peak consumption months (with no restrictions applying) and 20% of total consumption over a full year.

The twenty (20) top water users in Singleton in 2008/09 (with comparative consumptions in 2006/07) were

	Top 20 water consumers					
No.	Property Description	Category	Consumption (kL/a) (2008/09)	Consumption (kL/a) (2007/08)		
28647	Motel	Commercial	10655	7975		
18705	Motel	Commercial	10155	-		
113563	Farm/Business	Rural	9701	9361		
50823	Van Park	Commercial	9686	4177		
70987	School	Public/Institutional	9498	3231		
92692	Oval	Parks/Open Space	7941	8469		
88120	Mine	Industry	7681	-		
5231	Residential Units	Residential	6394	6740		
28423	Takeaway	Commercial	6062	3640		
95265	Motel	Commercial	5779	5097		
147978	Pool	Parks/Open Space	5535	4676		
104141	Light Industrial Business	Industrial	5478	-		
110510	Park	Parks/Open Space	5291	6042		
129391	Mall	Commercial (?)	4907	17006		
28688	School	Public/Institutional	4169	-		
120826	School	Public/Institutional	4092	3278		
41087	Light Industrial Business	Industrial	3942	-		
28522	Motel	Commercial	3675	-		
24349	Mall	Commercial (?)	3382	-		
128855	Cement works	Industrial	3365	5732		

The biggest water users in 2008/09 were two motels (10.7 & 10.2 ML/year respectively), whereas in 2007/08 the biggest user was the Mall (17.0 ML/year). The Mall's usage in 2008/09 was reduced significantly to 8.6 ML/year.

There are no major industrial users (the mine used 7.7 ML/year in 2008/09 and wasn't in the top 20 users in 2007/08).

Areas where Council could have some beneficial influence in reducing water consumption are:

- Water audits for motels and the caravan park
- Audits and actions to reduce usage at Council facilities (like the ovals & swimming pool)
- Education/awareness campaigns at all schools

Assets & Asset Management

Singleton has a comprehensive Asset Management Plan, including a Water Supply Asset Register, which lists the following information:-

- WTP's and Pump Stations
- Reservoirs
- Filtered Water Mains
- Filtered Water Fittings
- Raw Water Mains
- Raw Water Fittings.

Council has also recently completed a 100 Year Asset Renewal Plan for Water Supply and Sewerage Services, February 2009.

Details of Council's Water Supply Assets are shown in Table A21 below:

	Table A21: Deta	ils of Water & S	Sewerage Assets						
Business	Assets	Dep'n. Expense	Fair Valuation	Accumulated Depreciation & Impairment	Carrying Amount (WDV)	Asset Condition (1)	Estimated cost to bring up to a satisfactory condition	Required Annual Maintenance	Current Annual Maintenance
		(\$)	\$'000	\$'000	\$'000		\$'000	\$'000	\$'000
Water Supply	Treatment Plants	441	18,016	9,671	8,345	2	-	593	811
	Reticulation Mains	622	38,101	15,271	22.830	3	-	168	226
	Trunk Mains	267	15,213	6,114	9,099	3	-	19	5
	Reservoirs	67	6,153	2,400	3,753	3	65	48	30
	Pump Stations	16	572	312	260	2	-	202	353
	Sub total	1,413	78,055	33,768	44,287		65	1,030	1,425
Sewerage	Pump Stations	176	5,709	3,561	2,148	3	520	118	69
	Reticulation Mains	456	33,162	16,093	17,069	4	1,500	256	564
	Manholes	60	5,283	2,588	2,695	4	150	42	-
	Treatment Works	196	7,882	4,196	3,686	3	-	204	260
	Sub total	888	52,036	26,438	25,598		2,170	620	893

Table A20 indicates that Water Supply Assets are in fair to good condition, but are aging and that a program of asset replacement / renewal is necessary (which Council has in place under its 30 Year Forward Capital Works Program).

Councils Asset Register indicates that a high percentage of distribution and reticulation pipework is at or older than 30 years.

Council also recognises that it has a high percentage of AC pipes which will need to be replaced over the next 30 years. .

Note: (1) Condition 2 = Superficial Deterioration (Ranges from Good to Fair)

Condition 3 = Deterioration Evident (Ranges from Fair to Marginal)

Condition 4 = Requires Major Reconstruction (Ranges from Poor to Critical)

e. Current Sewerage Services

Sewerage Services Summary

Key aspects of the sewerage services in Singleton LGA are summarised in Table A22 below:-

Table A22: Summary of Sewerage Services

			1
		2007/08	2008/09
Population Serviced:	Permanent	14,926	15,009
(TBL performance Reports)			
Connected Properties:	Residential	5,077	5,115
	Non- Residential	451	444
Unsewered Urban Premises (No.)		200	316
Unsewered Urban Premises (%)		4%	6.2%
No. of on-site systems (within LGA)		4,357	4,951(Mostly in the
			Villages)
Volume of Sewage treated (ML/d)		1,278	1,353
Volume of Sewage treated		643	636
(kL/property)			
Volume Recycled		33.3% (426	33.3% (451 ML)
		ML)	
Biosolids Re-used (On site uses)		0%	0%
biosolius re-useu (Off site uses)		070	070
Infiltration (assessed)	Not measured		
EPA Licences:	Licence No. 3088		
	Licence to discharge		
	to Doughboy Hollow		
		0	0
Public Health Incidents		0	0
Environmental Incidents (Cat. 1)		0	0
(Cat. 2/3)		0	0
Odour Complaints		2	1
Service Complaints		13	20

Source: DWE Performance Reports 2007/08; 2008/09

Sewerage Systems

Principal aspects of Council's sewerage infrastructure include:-

Treatment Works: Intermitted Extended Aeration Activated Sludge Plant (20,000 EP)

Capacity)

Pumping Stations: 14 No.Pumping Capacity: 9.1 ML/d

Length of Mains: Gravity Reticulation: 117 kms

Pumping (Rising)Mains: 19 kms

Total Length of Mains
 136 kms

Sewage Treatment:-

The Singleton Sewage Treatment Plant, which discharges into the Hunter River via Doughboy Hollow (the licensed discharge point), is licensed by DECCW (EPA) under Licence No 3088. The Licensed discharge point is at the outlet pit, downstream of the maturation pond.

Flow data at the Treatment Plant is summarised in Table A23 below:

Table A23: Annual Flows at Sewage Treatment Plant

Capacity	20,000 EP
Flow Categorisation	
-Annual Residential Inflow	1,353 ML/yr
-Annual Non-Residential Inflow	Not separately measured or recorded
Total	1,353 ML
-Trade Waste	Not recorded
-Infiltration	0
Average Dry Weather Flow	46.7 L/s
Peak Dry Weather Flow:	91.7 L/s
Peak Wet Weather Flow	12.0 ML/d

Effluent Quality:

Effluent analysis results (mean values) for the Singleton Plant are shown in Table A24 below.

Table A24: Analysis Results for Singleton (2008 EPA Licence Periods)

Parameter		Singleton STP	
	90%ile limit	100%ile limit	% Compliant
pH (units)	-	6.5-8.5	-
BOD (mg/L)	10	15	100
TSS (mg/L)	15	20	100
Ammonia (mg/L)	2	5	100
Total N (mg/L)	10	15	100
Faecal coliforms (per			
100 ml)	200	600	100
Oil & Grease (mg/L)	10	15	100
Total P (mg/L)	0.3	0.5	100

These are very good treatment results.

There are however, a number of "non-compliances" listed on the DECCW website (www.environment.nsw.gov.au/prpoeoapp/LicenceDetails.aspx) for 2000, 2001, 2002, 2003, 2004, 2005, 2007 & 2008 and these are discussed more fully in **Appendix C: IWCM Related Targets, Obligations, Responsibilities and Requirements.**

Trade Waste Management

Council updated its Trade Waste Policy in 2005.

<u>Potential Issue</u>: With changes to the Trade Waste Guidelines published by the NSW Office of Water in 2009, this Policy is now out of date and will need to be updated.

Council also has in place a Community Service Obligation Policy with respect to Liquid Trade Waste Services.

Assets and Asset Management

Council maintains an excellent Asset Management Plan, including an up-to-date Asset Register, which lists the following information:-

- Sewer Pump Stations
- Sewer Rising Mains
- Gravity Sewers
- Sewer Manholes.

The assets are listed with the Water Assets in Table A20 above.

Table A20 indicates that the Sewerage Assets are in **fairly poor condition**, are aging, but sufficient annual expenditure appears to be directed to renewals and maintenance.

Council's 100 Year Asset Renewal Plan details the works required to bring the sewerage asset base up to good condition.

Potential Issue: Sewerage infrastructure condition assessment

f. Current Stormwater Services

Singleton has a fully functional stormwater drainage system. Stormwater discharge is typically to the Hunter River.

Stormwater Management

Consultants, Sinclair Knight Merz (SKM), were commissioned in 1998 to carryout a review of existing flood studies and to prepare a Development Control Plan (DCP). A pivotal recommendation of SKM's report was that a Flood Plain Management Plan be prepared. **This has not been completed.**

Council does have a Stormwater Management Plan (2003) which deals primarily with stormwater quality management and environmental aspects.

A "Flood Safe" brochure is also posted on Council's website which advises residents about flooding incidents, the risks involved and some measures which can be implemented to minimise risk. This information brochure is sponsored by the Singleton SES.

Stormwater Levels of Service

Council does not have Levels of Service in place for stormwater services.

Stormwater quality data is also not available because there is no monitoring program in place.

5A. CLIMATE CHANGE ASPECTS

A 2008 Report on NSW climate change impacts, Future Climate and Runoff Projections (to 2030) for New South Wales and Australian Capital Territory, provides the first detailed projections of the impacts of climate change on runoff and water availability across New South Wales.

The Report concludes:

- There is considerable uncertainty in the modelling of rainfall response to global warming in NSW and ACT
- 9 out of 15 of the global climate models (GCM's) show a decrease in the mean annual rainfall
- Winter rainfalls are likely to be lower across the entire State
- There is less likelihood of reductions in future summer rainfalls (only 5 out of 15 GCM's indicate a reduction)
- The median (or best) estimate indicates that mean future rainfall in NSW in 2030 relative to 1990 will be lower by 0 to 20% in the southern parts
- Averaged across all regions, the median estimate is a 5% decrease in mean annual rainfall.

The results of this study/report will be used in NSW to look at the impacts of future flows and river health, aquatic ecosystems and water availability for towns, irrigation and industry.

Impacts on the Water Utility may include:

- Changes to water access licence conditions
- Greater uncertainty about yield from the existing raw water sources (potentially decreased water availability with increasing water demand)
- Possible increases in damage to underground infrastructure, particularly pipelines
- Reduction in sewage volumes
- Increased retention time of sewage in mains, particularly rising mains
- Increased concentration of nutrients and chemicals in raw sewage
- Changing technology and legislation
- Greater interest and/or need to use low carbon dioxide (green) energy

Impacts on Customers may include:

- Increased total and/or seasonal water usage
- Increased grey water use
- Increased use of evaporative coolers

Movement of people and industries away from areas of water shortage

Impacts Specific to Singleton

The Tom Farrell Institute for the Environment has undertaken climate change modelling specific to the Hunter, Lower North Coast and Central Coast regions (utilising the CSIRO GCM predictions for NSW). (Source: Hunter & Central Coast Regional Environmental Management Strategy).

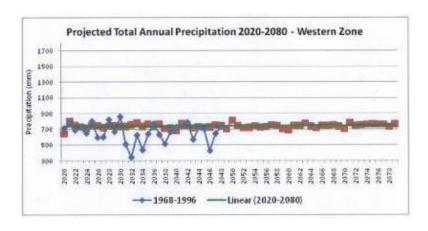
For Singleton the projections indicate:

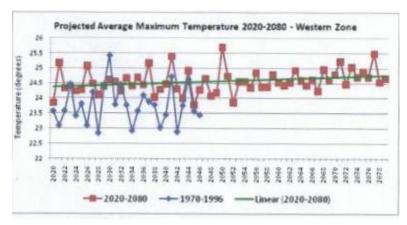
- very little change in rainfall patterns, except for a statistically significant increase in autumn rainfall;
- → an increase in extreme heat days;
- general increases in mean daily temperatures, with autumn and winter increases the most significant;
- ▲ a significant increase in the average minimum temperature of approximately 4.2°C in the western zone (including Singleton Shire) for the period 2020-2080;
- minimal changes in average summer maximum temperatures.

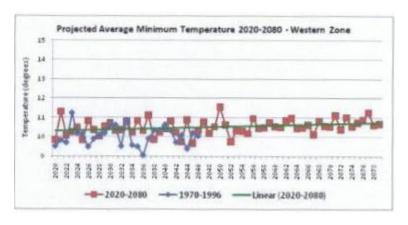
Table A25 shows the CSIRO's modelled predictions for the Hunter-Central Rivers catchment. Graphs of the relevant projections are also attached as Figures A13 and A14.

Singleton Council will need to consider these possible predictions in planning the future needs for both water supply and sewerage.

It is understood that Council will be required to assess the "secure yield" of its water source (Glennies Creek Dam) in the next year or two (pers.comm: Brian Carter).


<u>Potential Issue</u>: Determination of secure yield of Singleton's water source being Glennies Creek Dam


Table A25: Current and Projected Climate Change in the Hunter-Central Rivers Catchment


	Present (1990) (1)	Projected Change	
		2030	2070
Temperature			
Average	Paterson: 17-32 °C (2)	+ 0.2 +1.6 °C	+0.7-+4.8 °C
	Scone: 17-29 °C (2)		
	Williamtown:18-29 °C (2)		
No. Days below O ⁰ C	Scone: 5	Scone: 1-4	Scone: 0-2
No. Days above	Scone: 17	Scone: 19-32	Scone: 24-78
35∘C			
No. Days above	Scone: 1	Scone: 1-4	Scone: 2-23
40∘C			
Rainfall			
Annual Average	Paterson: 928 mm	-7-+7%	-20-+20%
	Scone: 647 mm		
	Williamtown: 1,120 mm		
Extreme Rainfall (3)		-10-+12%	-7-+10%
Evaporation		+1-+13%	+2-+40%
No. Droughts per	3	1-5	1-9
decade (4)			
Extreme Winds		-5-+8%	-16-+24%
No. Fire Days ⁽⁵⁾	Williamtown: 16	Williamtown: 17-19	Williamtown: 18-24

- 1 Present day conditions for temperature and rainfall represent long-term averages form the Bureau of Meteorology. For extreme temperatures, the present average is based on 1964-2003. For fire danger, the present average is based on 1974.
- 2 Range represents average July and January maximum temperature.
- 3 Defined as 1 in 40 year 1-day rainfall total Values represent the range in seasonal projections from a limited set of climate models.
- 4 The values for drought represent average monthly drought frequencies, based upon the Bureau of Meteorology's criteria for serious rainfall deficiency (see also Burke et al., 2006)
- 5 Number of days annually with a "very high" or "extreme" fire danger index. Changes are for 2020 and 2050, respectively.

(Source: CSIRO – Climate Change in the Hunter-Central Rivers Catchment)

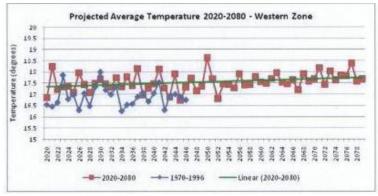


Figure A15: Projected Rainfall & Temperature Impacts of Climate Change – Singleton Shire (Source: Hunter & Central Coast Regional Environmental Management Strategy)

6A. SUMMARY

This Attachment has documented the Urban Water Services provided by Singleton Shire Council in terms of:

- the Catchment Context
- the Water Resources Context
- the Urban Water Systems Context, and
- the potential Climate Change Impacts.

The Data Gaps and Potential Issues identified in this investigation include:

a. Data Gaps

- Floodplain Management Plan
- Outdated Strategic Business Plans (1998)
- Water usage on public parks & open space areas
- Top individual water consumers
- Peak demands by user category
- Quantified water losses
- Assessment of sewerage system infiltration
- Trade waste discharges to the sewerage system and, in particular, to the Sewage Treatment Plant
- Update of the 2005 Trade Waste Policy in accordance with the revised Guidelines issued by the NSW Office of Water (2009)
- Update of the 2003 Stormwater Management Plan
- No Council endorsed Levels of Service for stormwater

b. Potential Issues

Item	Reference	Issue
1.	Section 2A – Catchment	Increasing customer base resulting in increases in water
	Perspective: Population Growth	consumption & wastewater generation over the next 30 years.
	(Page A7)	
2.	Section 2A – Catchment	Potential for urban salinity with potential impacts on water &
	Perspective: Geology & Soils	sewerage infrastructure
	(Page A9)	
3.	Section 2A – Catchment	Potential for groundwater recharge and/or pollution from septic
	Perspective: Geology & Soils	tank systems and leaking wastewater lagoons
	(Page A9)	
4.	Section 2A – Catchment	Potential gully erosion & stream erosion
	Perspective: Geology & Soils	
	(Page A9)	
5.	Section 2A – Catchment	Eight (8) vegetative species listed as vulnerable or endangered
	Perspective: Vegetation (Page	

A16)

	A16)	
6.	Section 2A – Catchment Perspective: Land Use (Page A19)	High current & future water consumption by the mining industry, with potential demand impacts on the water resource
7.	Section 2A – Catchment Perspective: Stormwater (Page A20)	Review & update Stormwater Management Plan
8.	Section 4A – Urban Water Systems: Sewerage to Villages (Page A33)	Four Villages (Broke, Jerrys Plains, Bulga & Camberwell are not sewered
9.	Section 4A – Urban Water Systems: Levels of Service (Page A39)	Relevance of current Levels of Service (framed in 1998)
10.	Section 4A – Urban Water Systems: Land Uses (Page A43)	Non-compliances with Licences issued by DECCW under the Protection of the Environment Act, 1997. [Refer Appendix C: IWCM Related Targets, Obligations, Responsibilities & Requirements]
11.	Section 4A – Urban Water Systems: Effluent Quality (Page A51)	Non-compliances with DECCW (EPA) Licence. [Refer Attachment E]
12.	Section 4A – Urban Water Systems: Trade Waste Policy (Page A51)	Current Trade Waste Policy not in accordance with revised (2009) Guidelines
13.	Section 4A – Urban Water Systems: Effluent Quality (Page A52)	Non- compliances with EPA Licence conditions (refer Appendix C)
14.	Section 4A – Urban Water Systems: Sewerage Asset Condition (Page A52)	Condition of sewerage infrastructure
15.	Section 4A – Urban Water Systems: Stormwater Levels of Service (Page A53)	No Stormwater Levels of Service have been adopted by Council and no Floodplain Management Plan developed
16.	Section 5A – Climate Change Aspects: (Page A55)	Council endorsed strategy for managing potential climate change impacts
17.	Section 5A – Climate Change Aspects: (Page A55)	Assessment of "secure yield" of existing water source (Glennies Creek dam)

7A. REFERENCES

Refer to Appendix E: Information & Data Assessment for a full listing of all references used in the IWCM Evaluation Study.

APPENDIX B

SINGLETON SYSTEM BOUNDARIES

Contents

1.	WATER UTILITY BOUNDARIES	1
	a. Service Boundaries	2
Fi	gures	
Fig	gure B1: Shire of Singleton and Surrounding Villages	2
Fig	gure B2: Hunter Local Government Boundaries	3
Fig	gure B-1: Schematic: Singleton Water Supply from Glennies Creek Dam	6
Fig	gure B-2: Schematic: Singleton Water Treatment Plant	7
Fig	gure B-3: Singleton Water Service Area	8
Fig	gure B-4: Singleton & Surrounds Water Supply	9
Fig	gure B-5: Singleton Water Supply Headworks	10
Fig	gure B-6: Southern Water Supply Areas	11
Fig	gure B-7: Northern Water Supply Area	12
Fig	gure B-8: Jerrys Plains water Supply Headworks	13
Fig	gure B-9: Jerrys Plains Water Supply Area	14
Fig	gure B-10: Mount Thorley Water Supply Area	15
Fig	gure B-11: Broke Water Supply Area	16
Fig	gure B-12: Singleton Sewerage Service Area	18
Fig	gure B-13: Schematic: Singleton Sewage Treatment Plan	19

Contents

1. WATER UTILITY BOUNDARIES

There are essentially three boundaries which apply to a Local Government Owned Water Utility (LWU), namely:

- Service Boundaries
- Administrative Boundaries and
- Physical Boundaries

a. Service Boundaries

Singleton Shire Council, as the Local Water Utility (LWU), provides water supply, sewerage and stormwater to the following towns:-

Potable Water Supply:

- Singleton
- Mount Thorley Industrial Area
 (90 industrial customers. Interconnection pipeline with Singleton system feeding to a major reservoir in the industrial area)
- Army Camp Abattoir
- (supplied by extended trunk main from Singleton to local balance tank)
- Broke Village
 (supply to 110 houses 9150 lots in the
 Village) via connection to the Singleton –
 Mount Thorley supply main)
- Jerrys Plains Village (supply to 90 houses (120 lots in Village), sourced from Naegan – Bayswater Power Station)

Sewerage:

- Singleton (5,115 connections)
- Maison Dieu (pressure sewer system not all properties connected)

Stormwater:

- Singleton only
- Villages have standard, semi-rural, table drain systems

Maps and details of the water supply, sewerage and stormwater systems are appended in Attachment B1.

General Comments:

- Council is considering the provision of potable water supplies to Bulga and Camberwell Villages.
 Concept designs and cost estimates are being reviewed and allowance has been made for these schemes in the revised Water Financial Model (2009).
 - The existing Council resolution is that these schemes not proceed without State Government subsidy.
- None of the Villages are sewered. Consultants have been engaged to prepare concept designs and cost estimates for provision of sewerage to all Villages.
 - Previously, Council has resolved not to proceed with the Villages' sewerage scheme without subsidy, due to the high costs involved

Figure B1: Shire of Singleton and Surrounding Villages

b. Administrative Boundaries

Singleton Shire Council is responsible for the planning, operation and management of all water supply, sewerage and stormwater services within the Shire, subject to the regulatory functions of a number of NSW State Government Departments, namely:-

- * NSW Office of Water,
- * NSW Health,
- * Department of Environment, Climate Change and Water (DECCW).

Other Agencies relevant to the operation and management of Singleton's water supply, sewerage and stormwater services include:-

- * State Water, Newcastle; in relation to water allocations from the Hunter River.
- * NSW Department of Primary Industries,
- * NSW Department of Lands
- * NSW Roads and Traffic Authority,

c. Physical Boundaries

Singleton is located in the Hunter Local Government region of New South Wales, is within the Hunter – Central Rivers catchment and is surrounded by Upper Hunter, Dungog, Maitland, Cessnock, Hawkesbury & Mid Western Regional Councils

Figure 2 below shows Singleton in relation to the surrounding Shires.

Figure B2: Hunter Local Government Boundaries

(Source: NSW Department of Local Government)

TACHMENT B1	: SINGLETON SY	STEM BOUND	ARIES - SCHE	MATICS

ATTACHMENT B - 1 BULK WATER SUPPLY SCHEMATICS	Singleton Council: IWCM Evaluation Study: Appendix B	
	ATTACHMENT B - 1 BULK WATER SUPPLY SCHEMATICS	

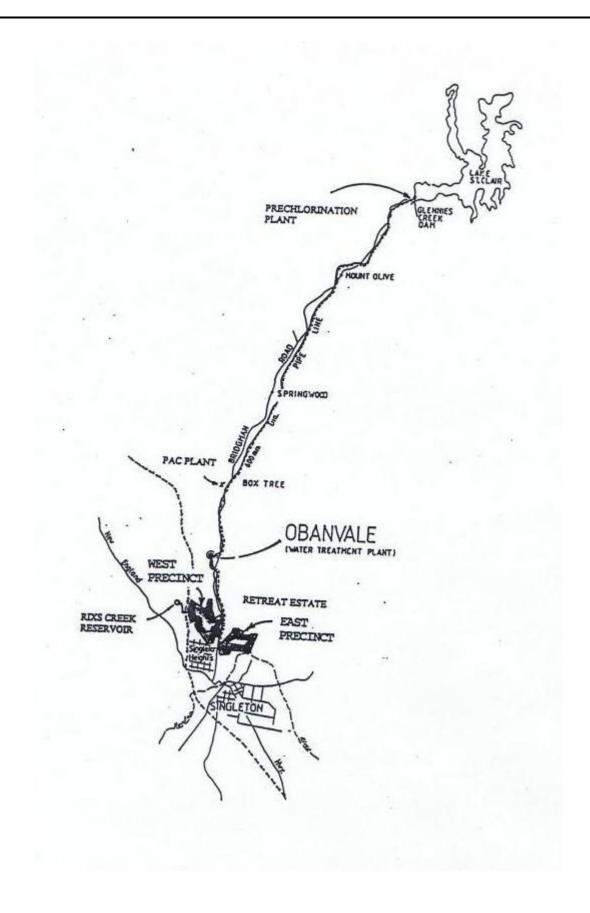


Figure B-1: Schematic: Singleton Water Supply from Glennies Creek Dam

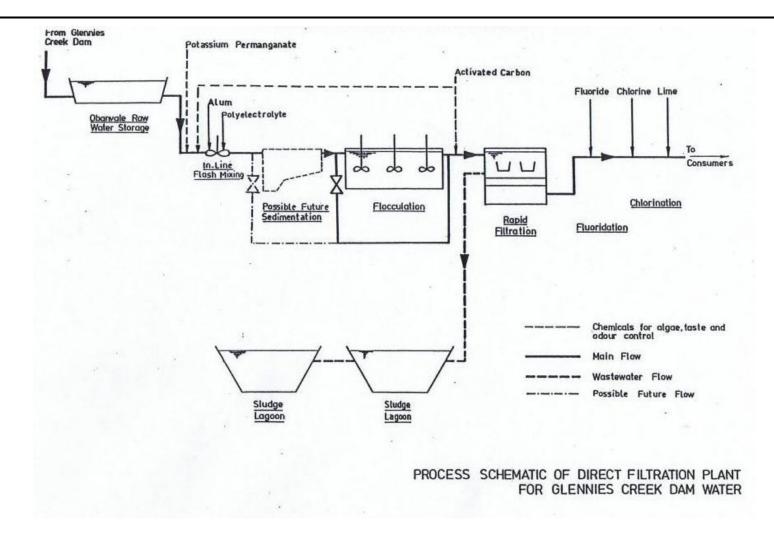


Figure B-2: Schematic: Singleton Water Treatment Plant

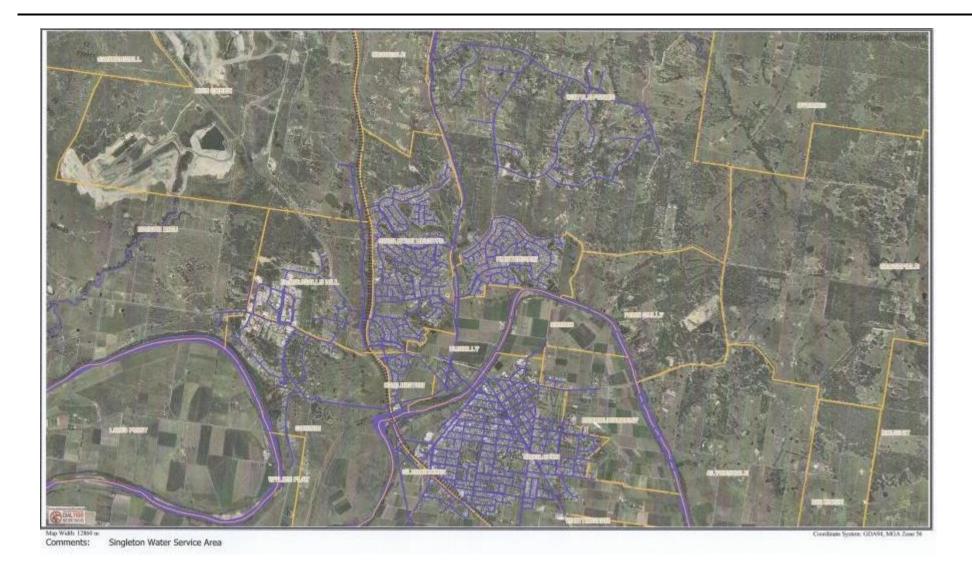


Figure B-3: Singleton Water Service Area

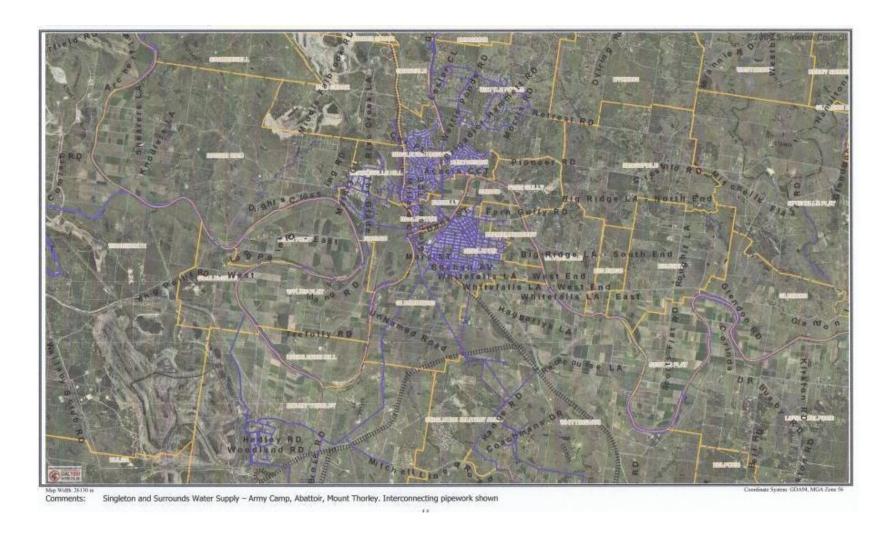


Figure B-4: Singleton & Surrounds Water Supply

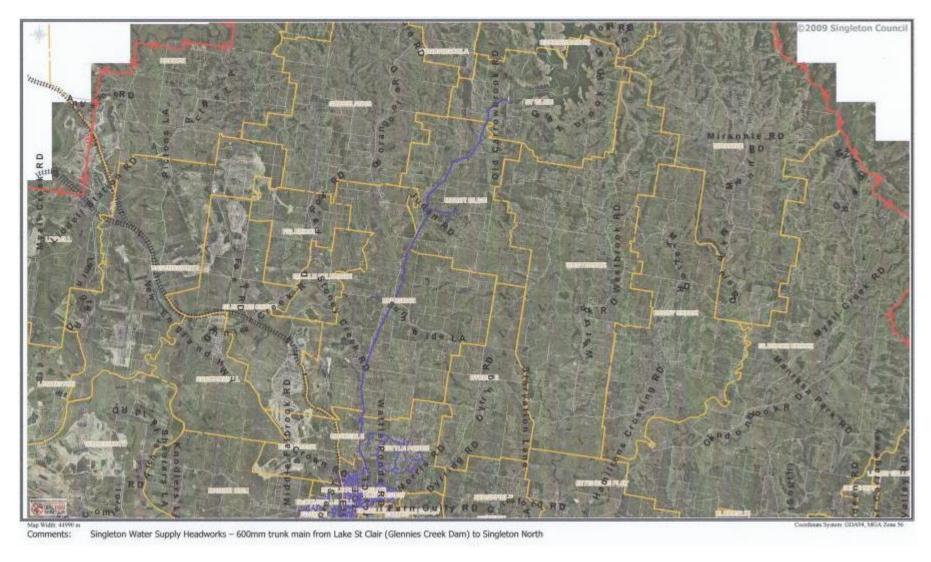


Figure B-5: Singleton Water Supply Headworks

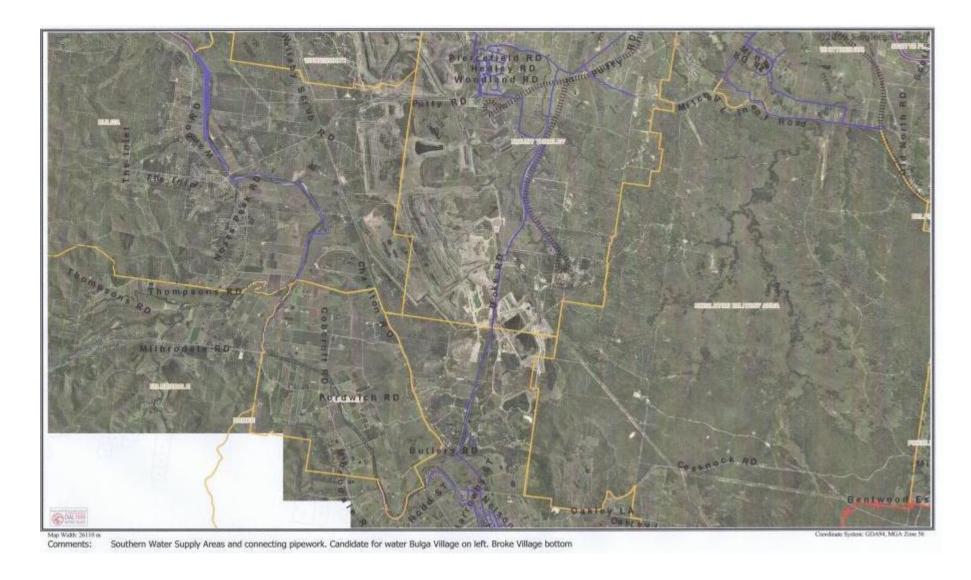


Figure B-6: Southern Water Supply Areas

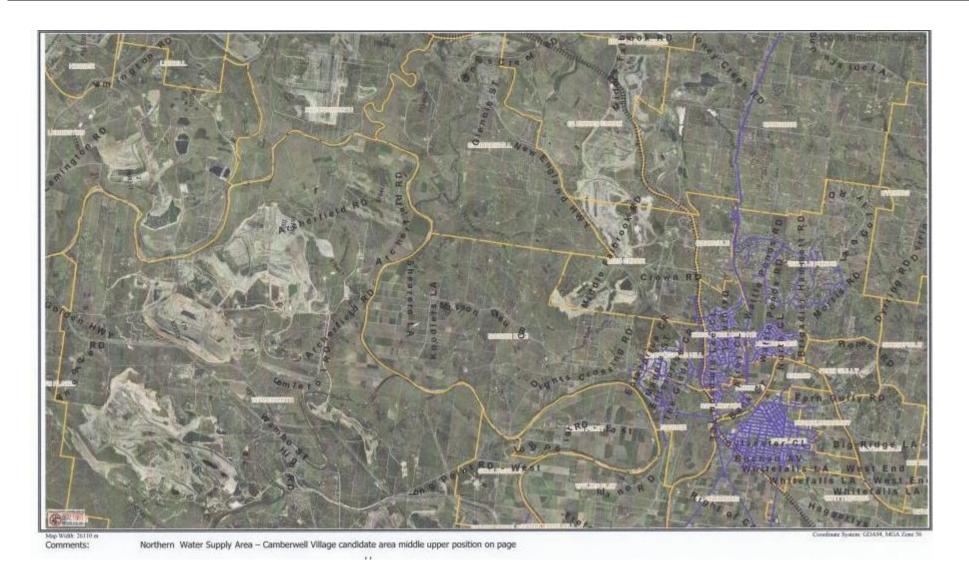


Figure B-7: Northern Water Supply Area

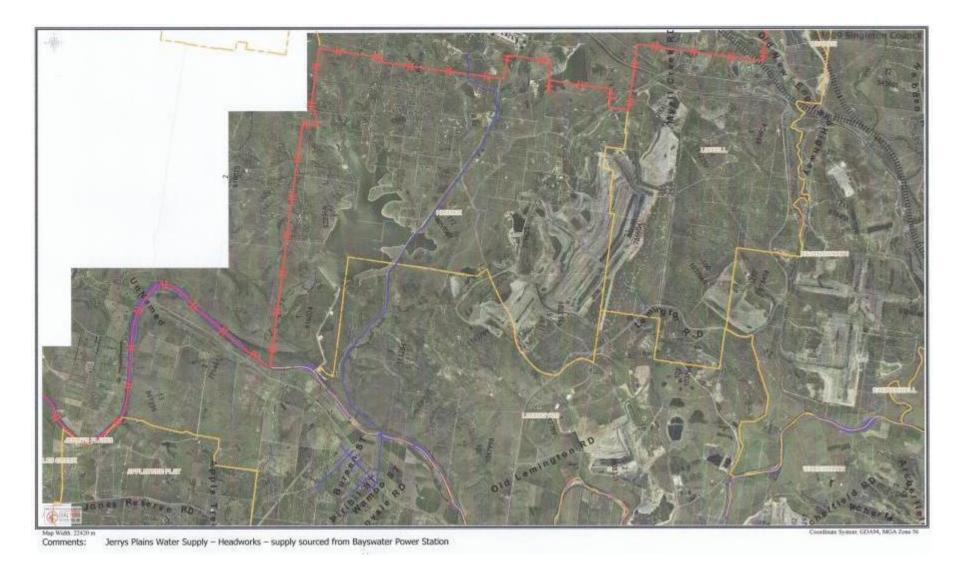


Figure B-8: Jerrys Plains water Supply Headworks

Figure B-9: Jerrys Plains Water Supply Area

Figure B-10: Mount Thorley Water Supply Area

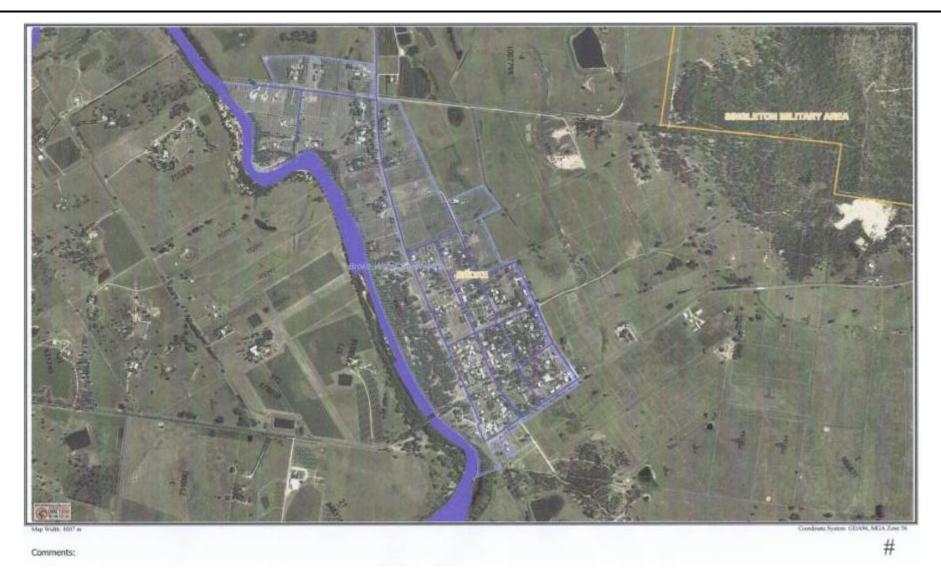


Figure B-11: Broke Water Supply Area

ATTACHMENT B - 2 SEWERAGE SYSTEMS	

Figure B-12: Singleton Sewerage Service Area

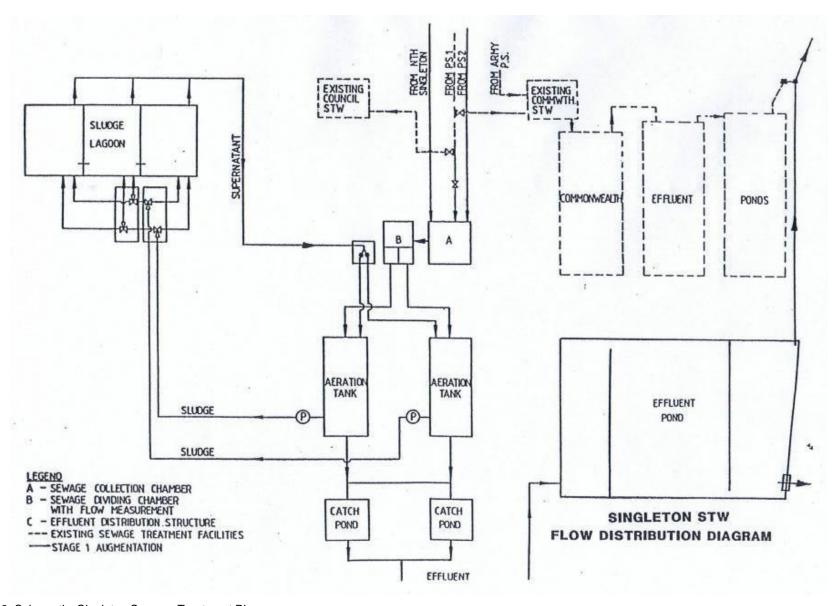


Figure B-13: Schematic: Singleton Sewage Treatment Plan

Singleton Council: IWCM Evaluation Study: Appendix C

APPENDIX C

IWCM RELATED TARGETS, OBLIGATIONS, RESPONSIBILITIES & REQUIREMENTS

Contents

1C. INTRODUCTION	. 1
2C. AUSTRALIAN DRINKING WATER GUIDELINES	. 1
3C. WATER ENTITLEMENTS	. 2
4C. LICENCES	. 3
5C. CONTRACT OBLIGATIONS	. 6
6C. LEVELS OF SERVICE	. 7
7C. PERFORMANCE REPORTING	13
8C. LEGISLATIVE REQUIREMENTS	14
9C. PERFORMANCE REPORTING AND BEST PRACTICE COMPLIANCE	17
10C.MANAGEMENT AND BUSINESS PLANS	17
11C.OTHER COMPLIANCE ASPECTS	17
12C.SUMMARY – DATA GAPS & POTENTIAL ISSUES	22
Tables	
Table C1: NSW Health Analysis Results	1
Table C2: Water Entitlements	3
Table C3: Discharge Volumes	4
Table C4: Concentration Limits	4
Table C5: Load Limits	4
Table C6: Monitoring Requirements	4
Table C7: STP Non-compliances	5
Table C8: Water Supply: Levels of Service	7
Table C9: Sewerage: Levels of Service	10
Table C10: Singleton Shire Council: Legislative Obligations	14
Table C11: Relevant State Planning Instruments	16

Attachments

- 1: Singleton TBL Reports for 2007/08
- 2: Forward Capital Works Programs for Water Supply & Sewerage

1C. INTRODUCTION

There are a number of plans, strategies, initiatives and legislative documents and requirements which impose obligations, tasks and responsibilities on Local Water Utilities.

This Section summarises these externalities and the requirements and obligations they impose on the water businesses of Singleton Shire.

2C. AUSTRALIAN DRINKING WATER GUIDELINES

The Australian Drinking Water Guidelines (ADWG 2004) provide the generally accepted criteria for drinking water quality standards for LWUs.

Singleton Shire Council has adopted the ADWG for its water quality standards, to ensure that the water reaching all consumers is safe to drink.

NSW Health defines the requirements for monitoring frequencies and number of samples and Council's obligation is to comply with these requirements.

The analysis results for Singleton (575 samples) and Jerrys Plains (112 samples) for the period 1 July 2005 to 30 June 2009 are summarised in the Table below:

Table C1: NSW Health Analysis Results

Period	Parameter	Compliance (Meeting Guideline Values)		
		Singleton	Jerrys Plains	
July 2005 – June 2009	Total Coliforms	96%	99%	
	E. coli	100%	100%	
	рН	100%	100%	
	Turbidity	100%	100%	
	TDS	100%	100%	
	Chemical	100%	100%	
	Except			
	Lead	-	75%	
	Fluoride (daily)	86%	NA	
	Fluoride (weekly)	91%	NA	
	Fluoride (Field Result)	NA	NA	

(Source: NSW Health Drinking Water Database)

In terms of overall performance over the four (4) years, the following are the non-compliances recorded:

Singleton: Total Coliforms: 23 exceptions

Fluoride daily: 142 exceptions Fluoride weekly: 39 exceptions

Jerrys Plains: Total coliforms: 1 exception

Lead: 2 exceptions

The non-compliances for Singleton related to minor problems with sampling techniques for fluoride, which have now been corrected.

<u>Issues:</u> Jerrys Plains – non-compliance with Lead concentrations

The Drinking Water Guidelines have recently been revised to now incorporate a risk based framework for the <u>Management</u> of Drinking Water Quality.

It is expected that this will become the standard for LWUs to implement in the future.

A key requirement of the Framework is the preparation of a Drinking Water Quality Management Plan. Singleton Shire is planning to develop a Management Plan in 2011.

<u>Potential Issue</u>: Development of a Water Quality Management Plan in accordance with the Australian Drinking Water Guidelines

3C. WATER ENTITLEMENTS

Water entitlements for Singleton are detailed below:

Licence	Location	High Security ML/year	General Security ML/year
HU/20AL 20 0015	Glennies Creek – Town	5000	
HU/20AL20 0018	Jerrys Plains (supplied through MacGen)	32	
HU/20AL20 1448	Mt Thorley from Parks		24
HU/20AL20 1240	Mt Thorley from Windt	5	
HU/20AL20 1239	Mt Thorley Mine Allocation %	1907	
	Bulga 867		
	Mt Thorley 867		
	Warkworth 145		
	Council 33 to Mush Comp		

HU/20AL20 1247	Mushroom Cor	•			51 25		
	Groundwater accessed)	Entitlements	(currently	not	4,050		
			То	tals	11,070	24	

Table C2: Water Entitlements

The Town Entitlements total 5,000 ML/year (5,000 ML/yr for Singleton)

Mt Thorley water has been built-up over the years from a number of sources - 24 ML of General Security was transferred from existing town Parks usage along with 25 ML of High Security Water.

5 ML of High Security Domestic and Stock was purchased when the industrial land was bought in 1980.

The 1907 ML High Security allocation is an aggregation of the Mt Thorley Water Supply Joint Venture partnership allocations, including Council, but the MT industrial area reticulation is now supplied from town and not from the Joint Venture. This is the principal licence Council uses.

Potable water consumption in Singleton (under the Town water entitlement) has averaged 2,705 ML/year over the past five (5) years and 2,842 ML/year over the past ten (10) years. Potable consumption in 2008 was 2,349 ML/year.

There has been a general reduction in water consumption over the last ten (10) years, despite population growth in excess of 1.3% pa over the same period.

Council is currently using less than half its annual entitlement.

In summary, Council holds entitlements of 5,032 ML/a as Town Supply Entitlements, 1, 988 ML/a of High Security Entitlements and 24 ML/a of General Security Entitlements.

There are currently no reduced (drought induced) allocations of the Town supply entitlements.

4C. LICENCES

Sewage Treatment Plant Licence

The **Singleton Sewage Treatment Plant** (located at Army Camp Road, Singleton) is required to operate in accordance with DECCW (EPA) Licence No. 3088.

The Licence Discharge Point is at the outlet pit downstream of the Maturation Pond, discharging to Doughboy Hollow.

The current licence discharge limits are shown below:

Table C3: Discharge Volumes

Unit of measure Volume Limit

Kilolitres per day 33,600

Table C4: Concentration Limits

Pollutant	Units Measure	of	50 percentile concentration	80 percentile concentration	90 percentile concentration	100 percentile concentration
			limit	limit	limit	limit
Total	milligrams p	per	20	-	30	35
suspended	litre					
solids						
Biochemical	milligrams p	per	20	-	30	35
oxygen demand	litre					
Oil & Grease	milligrams p	per	-	10	-	15
	litre					
Nitrogen (total)	milligrams p	per		15	-	25
	litre					
Phosphorus	milligrams p	per	-	10	-	15
(total)	litre					

Table C5: Load Limits

Assessable Pollutant Load Limit (kg)

BOD (Enclosed Waters) 18,288
Nitrogen (total) (Enclosed Waters) 24,384
Oil & Grease (Enclosed Waters) 12,192
Phosphorus (total) (Enclosed Waters) 12,192
Total suspended solids (Enclosed Waters) 24,384

Table C6: Monitoring Requirements

Pollutant	Units of Measure	Frequency	Sampling Method
Biochemical oxygen demand	milligrams per litre	Once a month (min. of 4 weeks)	Grab sample
Nitrogen (total)	milligrams per litre	Once a month (min. of 4 weeks)	Grab sample
Oil and Grease	milligrams per litre	Once a month (min. of 4 weeks)	Grab sample
Phosphorus (total)	milligrams per litre	Once a month (min. of 4 weeks)	Grab sample
Total suspended solids	milligrams per litre	Once a month (min. of 4 weeks)	Grab sample
Flow	Kilolitres	Continuous	Electronic sensor & continuous logger

Council is also required to submit annual returns, notify of any harm to the environment as a result of the sewerage system operation, provide written reports as requested by DECCW submit annual performance reports and manage biosolids (storage, treatment, transportation and disposal) in accordance with DECCW's Biosolids Guidelines.

There has been a number of non-compliances recorded by DECCW against the Singleton STP over the last five (5) years and these are detailed below:

Table C7: STP Non-compliances

Year	Non-compliant	Details	Comments
2008	BOD: Load limit	Exceeded limit: once	
	TSS: 50%ile limit	Exceeded limit: twice	Due to algae in Maturation Lagoon
	BOD:50%ile, 90%ile(?),	Exceeded limit: once	Not unusual for STP's, where sampling is
	100%ile limits		grab sample once per month
	Oil and Grease: 80%ile &	Exceeded limit: once	Not unusual for STP's, where sampling is
	100%ile limits		grab sample once per month
	Total N; 80%ile and	Exceeded limit: once	Not unusual for STP's, where sampling is
	100% limits		grab sample once per month
2007	Total P: Load limit	Exceeded limit: once	
	Total P: 80%ile limit	Exceeded limit: five times	There are no facilities (ie. No chemical
			dosing)
	TSS: 100%ile limit	Exceeded limit: once	
2005	Oil and Grease: 100%ile	Exceeded limit: once	
	limit		
	Total P: 80%ile limit	Exceeded limit: three times	Council's existing STP does not have P
			removal capability. This will be addressed
			with the new Plant which is being designed
			for P removal.
	Sample Collection	Exceeded 4 week	
		frequency for samples:	
		once	
2004	Oil and Grease: 100%ile	Exceeded limit: once	
	limit		
	PRP:	Requirements not	The PRP no longer applies. Necessary
		completed by due date	works implemented

The record of non-compliance indicates a requirement for Council to improve the management of the STP, particularly in relation to BOD, TSS & Oil and Grease compliance.

Council is currently (2010) finalising Tenders for the augmentation of the Sewage Treatment Plant (Therefore, this is not an IWCM Issue.)

5C. CONTRACT OBLIGATIONS

The Contract obligations Council have are:

- Water supply to Jerrys Plains Village is sourced separately from the Macgen Bayswater Power Station.
 Council's obligation is to manage the supply to Jerrys Plains, including water quality monitoring as required by NSW Health.
- Singleton Army Camp: Bulk water supply and sewage treatment (Pay for Service Contract).
- Mount Thorley Joint Venture: Contract to manage a river water pumping scheme for three (3) open cut coal mines.
- Abattoir: Contract to supply water.

Council also takes the responsibility for quality compliance in relation to various mines via water carting contracts.

All the above Contract Obligations are being met.

Given that Council is currently assessing Tenders for augmentation of the STP, the subsequent Contract will become a Contract Obligation in 2010 and beyond.

6C. LEVELS OF SERVICE

The current Levels of Service (LOS) are somewhat dated, as they were developed as part of the 1998/99 Strategic Business Planning Process.

These LOS are being reviewed and updated by Council as part of a review of the dated Strategic Business Plans. It is anticipated that the revised SBPs will be available by mid 2010.

The existing LOS are reproduced below because they are the current service commitments by Council to its customers.

Table C8: Water Supply: Levels of Service

Description	Unit	1998/99 Target	Achievement/Comments
		Levels of Service	
Availability of Supply			
Normal Quantity			
Available			
Domestic Peak day	Litres/tenement/day	4,000	Yes – currently 1900L/tenement/day
Domestic Annual	Kilolitres/tenement/year	250-350 (60%)	Yes – domestic annual usage: 290
		500 (Average)	kL/tenement /year
Peak to Average	-	3.9	
consumption ratio			
Fire Fighting			
Compliance with	% area served	95%	98% achieved
Building Code of		Target: Increased	
Australia and NSW Fire		standard in CBD ie.	
Brigade requirements		2x22L/s	
Pressure			
Minimum pressure when	Metres head	12m absolute	100%
conveying 0.15		20m desirable	
L/s/tenement			
Maximum static	Metres head	120	100%
pressure			
Consumption			
Restrictions in			
Droughts			
In accordance with	% normal usage	In accordance with	1 occurrence in last 12 years
Council's Drought		targets set in Drought	
Management Plan		Plan	

Description	Unit	1998/99 Target Levels of	Achievement/Comments
		Service	
Supply Interruptions			
to Consumers			
Temporary supplies			
during planned			
interruptions			
Planned:			
- Notice given to	days	>1	95%
domestic customers			
- Notice given to	days	>1	95%
commercial customers	·		
Notice given to industrial	days	>1	95%
customers	•		
-Maximum duration of	hours	<6	100%
interruption			
-Number of interruptions	number per customer	<1 (excl. system break downs	Estimated at 90% achievement
	per year	or system development (eg	(due to subdivisional activity)
		connecting new subdivisions	
		etc)	
Unplanned:			
Target is for less than			
30 houses to be			
affected per failure.			
- Maximum duration	hours	4	NA
- Maximum number per	times	4	NA
two years		40	
Total number of	number per year per	10	NA
interruptions	1000 connections		
Response Times			
(Defined as maximum			
time to have staff onsite			
or to investigate problem or answer			
inquiry)			
Supply Failure			
During working hours	minutes	30	100%
Out of working hours	minutes	30	100%
Minor Problems and			
general Inquiries			
Oral inquiry		30 minutes to 1 day	90% (estimate)
Written inquiry		10 days	95% (estimate)
Note: Times apply for		, .	
95% of occasions			
Service Provided			
Time to provide an	working days	5	85%
individual connection	,		
to water supply			
serviced area (90% of			
times)			

Description	Unit	1998/99 Target Levels of	Achievement/Comments	
		Service		
Water Quality				
Microbiological				
Quality				
Coliforms	number per 100 mL	0	96% (2005 – 2009)	
Faecal Coliforms	number per 100 mL	0	100%	
Current long term microbiological compliance (thermo tolerant coliforms)	% complying	100	98%	
Note: In accordance with the 1996 NHMRC guidelines				
Physical Results				
pН	-	6.5-8.5	Yes	
Colour	True Colour Units	<5	Yes	
Turbidity	Nephelometric Turbidity Units	<0.2	95%	
Taste and Odour	Complaints per 1000 customers per year	5	NA	
Dirty Water	Complaints per 1000 customers per year	5	NA	
Aesthetics, Disinfection				
Chemical – Inorganic				
Results				
Iron	mg/L	<0.03	100%	
Manganese	mg/L	<0.01	75%	

Table C9: Sewerage: Levels of Service

Description	Unit	1998/99 Target Levels of Service	Achievement/Comments	
Availability of Service				
Extent of area serviced	serviced area	Target is to provide appropriate sewer services to the maximum extent possible	Extensions to services being allowed for in new SBP	
Frequency of System Failures				
Category One				
Failure due to rainfall and deficient capacity	number/year	<2 per year	100% compliance	
Category Two				
Failures due to pump or other breakdown include power failure	number/year	<2 per year	100% compliance	
Category Three				
Failures due to	number/year	150 per year	90% compliance (estimate)	
blockages Response Times to				
System Failure				
(Defined as the				
maximum time to				
have staff onsite to				
commence				
rectification after notification)				
Priority One				
(Major spill, significant environmental or health impact, or affecting large				
number of consumers i.e. a major main)				
- Response time during working hours:	minutes	30	100% compliance	
- Response time after hours:	minutes	30	100% compliance	

Description	Unit	1998	1998/99 Target Levels of Service			Achievement/Comments
Priority Two						
(Moderate spill, some						
environmental or						
health impact, or						
affecting small						
number of consumers						
i.e. other mains)						
- Response time		00				100% compliance
during working hours:	minutes	30				4000/
- Response time after	maine esta a	20				100% compliance
hours:	minutes	30				
Priority Three:						
(Minor spill, little environmental health						
impact, or affecting a						
couple of consumers)						
-Response time						
during working hours:	minutes	30	30			60% compliance
- Response time after						oo /o compilation
hours:	minutes	60+ (dependir	ng on nature	e of problem)	60% compliance
Response Times to					,	·
General or Minor						
Customer						
Complaints and						
Inquiries (1)						
- Written complaints	day	10	10			95% (estimate)
- Oral complaints	day		30 minutes to 1 day (depending on nature)			90% (estimate)
Note: Times for 95%						
of complaints						
Odour Complaints						
- Treatment Works	number/year	<4	<4			100% compliance
- Pumping Stations	number/year	<12	<12			100% compliance
Discharge Licence Conditions	(Percentiles)	50%	80%	90%	100%	
-Quantity	kL/day				6,000	100% compliance
- Biochemical						
Oxygen Demand	mg/L	20	-	30	35	98% (2004 – 2008)
- Non Filterable	mg/L	20	-	30	35	94% (2004 – 2008)
Residue						
- Oil and Grease	mg/L				10	94% (2004 – 2008)
- pH					6-9	100% (2004 – 2008)
- Phosphorus	mg/L				10	-
- Total Nitrogen	mg/L	-	15	-	-	98% (2004 – 2008)
- Faecal Coliforms	No./100 ML				No limit	-
(geometric mean)						

Council is generally complying with these Levels of Service.

Potential Issue: The need to update the Levels of Service.

[Council is currently updating the Strategic Business Plans for Water Supply & Sewerage and, as part of that process, the Levels of Service will be reviewed in line with current management and operational objectives – and community expectations].

Council does not have Levels of Service for Stormwater Services.

Council has in place:

- An <u>Urban Stormwater Management Plan</u> (2003);
- The Singleton Floodplain Management Development Control Plan (DCP) which incorporates a plan of areas affected by flooding and recommends that Council prepare an actual Floodplain Management Plan (This has never been completed);
- A community education program on Stormwater Quality which in 2008/09 involved:
 - program at three local schools
 - stencilling of drains throughout Singleton with "a drain is just for rain";
 - distribution of educational posters, brochures and leaflets to the community;
 - exhibitions in shopping centres;
 - local media campaigns.

7C. PERFORMANCE REPORTING

Annual performance reporting to the Office of Water is a requirement of Best Practice service provision for LWUs in NSW.

Although strictly not an Obligation for Council, the resulting Triple Bottom Line (TBL) Report, issued to Council, provides benchmarking information to enable LWUs to review their overall performance.

The TBL Reports for Water Supply and Sewerage for 2007/08 are appended to this Attachment.

On a state wide and similar sized LWUs comparison, the following are areas where Council's performance ranked in the bottom 20%:

Item	LWU's with 3,001 to	All LWUs
	10,000 Assessments	
Water Supply		
 customer interruption frequency per 100 properties 	✓	✓
 average annual water supplied (kL/property) – Coastal 	✓	✓
■ real losses (leakage) (L/ service connection /day	\checkmark	-
 residential revenue from usage charges (% of residential bills) 	✓	-
Sewerage		
average sewerage interruption (minutes)	\checkmark	\checkmark
total days lost (%)	\checkmark	\checkmark
 volume of sewage collected per property (kL) 	\checkmark	\checkmark
sewer main cost per property (\$)	-	✓

Council may consider it appropriate to take the necessary action to improve its performance in relation to each of the above items.

<u>Potential Issues</u>: Items listed above; where Council's TBL reported performance was in the bottom 20% for Councils in the 3,001 to 10,000 population category.

The TBL Reports also note that Council is non-compliant with Best Practice requirements in the following areas:

Water Supply

- Pricing complying residential charges
 (This is the requirement that LWUs like Singleton are required to recover 75% + of revenue from usage charges)
- Sound water conservation
 (Council has committed to completion of a Water Conservation & Demand Management Strategy in 2010)
- Integrated Water Cycle Management Strategy (This is being addressed in this Document)

Sewerage

 Integrated Water Cycle Management Strategy (This is being addressed in this Document)

8C. LEGISLATIVE REQUIREMENTS

As with all LWUs in NSW, Singleton is required to comply with a range of legislative obligations.

These are set out in Table C10 below.

Table C10: Singleton Shire Council: Legislative Obligations

Council's Obligations & Requirements Legislation Soil Conservation Act, This Act (inter alia) addresses soil erosion, preservation of watercourse 1938 environments and the protection of trees on protected land. Council is required to comply with the Act in relation to prevention of soil erosion and protection/preservation of watercourse environments, specifically Sections 19 (Proclaimed Works) and 22 (Preservation of Proclaimed Works) Fluoridation of Public This Act, together with the Fluoridation of Public Water Supplies Regulation (2002) Water Supplies Act, and the Code of Practice for the Fluoridation of Public Water Supplies (2002) direct 1957 G in the approvals required and the responsibilities attached to the fluoridation of Council's water supplies. Fluoridation applies at the Singleton Water Treatment Plant (but not for Jerrys Plains) and, under the legislation, Council is responsible for: · Daily and weekly tests at the treatment plant A monthly test submitted to Health's Analytical Laboratory • Reporting to Health of dosing above 1.5 mg/L and any interruptions to dosing longer than 24 hours **Environmental Planning** Requires that all proposals, activities and functions which are investigated, designed, and Assessment (EP&A) planned, constructed and operated by SC are to be assessed for their environmental Act, 1979 impact. The Act provides the basis for the preparation of environmental planning instruments that may be directly or indirectly related to the water business Relevant & important to all SC's operations, including Water & Sewerage. Occupational Health & Safety Act, 2000 (1) Requirements include risk assessment, risk management and training of staff in safety matters. Council MUST provide a safe working environment and provide equipment & resources to ensure safety of its workers and the community and can be liable for any breaches of these requirements. Public Health Act, 1991 Provides powers to NSW Health in relation to the supply of safe drinking water. Requirement for testing of drinking water and provision of results of testing. Powers to order rectification or closure of a water supply for non-compliance. Council is required to comply with the testing and reporting requirements of the Act and to take

action to rectify any matters affecting or likely to affect the safety of the water supply

<u>Potential Issue</u>: Fluoridation of Jerry's Plains water supply

to consumers.

Legislation Council's Obligations & Requirements Protection of the Need to exercise due diligence to avoid environmental impact. **Environment Operations** Need to develop operations emergency management plans. Obligation to notify EPA of pollution "incidents" Act, 1997 System licensing for sewerage systems; including Pollution Reduction Programs Treatment works operating licences must comply with the Act. Water Management Act, Requirement to levy developer charges. 2000 Provides the framework for water sharing plans and environmental flows. Defines LWU access licences and bulk water supply regimes Catchment Management Hunter Central Rivers CMA is the statutory body created by this Act Authorities Act, 2003 Provides the basis and authority for preparation of a Catchment Action Plan which sets direction for investment in natural resource management. Local Government Act, Need to comply with Accounting Standard AAS27 (including provisions regarding 1993 and Local accounting for depreciation) Requirements to comply with DWE Best Practice Criteria. Statutory requirements in Government (General) Regulation, 2005 relation to pricing and charges (including Developer Charges). Also stipulates the need for Ministerial approval to undertake water supply or sewerage works (Section 60) Other requirements including State of Environment reporting, triple bottom line reporting, etc

(1) Occupational Health & Safety

Council has in place a formally adopted Occupational Health & Safety strategy.

Council is also an active member of the Hunter Councils OH&S Group.

Council's 2009/10 Management Plan highlights the following in respect of OH&S:

Objectives

- To ensure employees have the necessary skills, training and motivation to successfully undertake their duties:
- To ensure compliance with all relevant OH&S obligations;
- To provide and maintain a safe and rewarding work environment for all members of the Singleton Council organisation
- and, under, Occupational Health & Safety Strategy:-
 - Review and develop Singleton Council's OH&S Management System to reflect best practice, promote continuous improvement and provide an infrastructure which addresses OH&S in a systematic way;
 - Develop and maintain a culture of accountability for ensuring health, safety and welfare;
 - Improve the capacity of Council program managers and employees to identify and manage hazards effectively.

There are also a number of Environmental Planning Instruments and requirements which impinge on the operations of Council and its related water and sewerage businesses. These are summarised in Table C11 below:

Table C11: Relevant State Planning Instruments

State Planning Policies (SEPP's)

Building Sustainability Index (BASIX), 2004

All new residential development, as well as alterations and additions are required to meet stipulated targets for water and energy efficiency. These targets became mandatory in 2005/06.

The Local Water Utility is required to include, in its planning role, any impacts of BASIX on future water needs

Implementation of this SEPP may impact on system demands in relation to water & sewerage services

Planning in NSW is carried out under the statutory control of the Environmental Planning and Assessment (EPA) Act, 1979. LEP's are the means used to prescribe land use policies and controls for Councils. Whilst LEP's focus on development control by land use zoning they may also deal with matters like the protection of heritage items, urban conservation,, environment protection, local works and area protection programs. Local councils are responsible for preparing LEP's DCP's alert developers to the level of detail required for certain types of applications and what standards are required for the design of certain developments. It ensures that standards related to water & sewerage infrastructure are suitable & relevant. The responsibility of the LWU is to ensure that Council places appropriate conditions on DCP's to protect the integrity and interest of

Housing for Seniors or People with a Disability, 2004

Local Environmental Plans (LEP's)

Development Control Plans (DCP's)

It would appear that Singleton Council is generally complying with all of the above legislative requirements. An extensive data search has failed to unearth any non-compliances.

the water businesses.

9C. PERFORMANCE REPORTING AND BEST PRACTICE COMPLIANCE

Singleton Shire Council has resolved to comply with the six (6) Best Practice Criteria, as defined by DWE, namely:

- Strategic Business Planning
- Pricing (including Developer Charges, Liquid Trade Waste Policy and Approvals)
- Water Conservation
- Drought Management
- · Performance Reporting
- Integrated Water Cycle Management.

According to the NSW Office of Water, Council is currently compliant with most aspects of Best Practice, except:-

- → Complying residential charges for water supply; (Council is working towards complying residential charges)

10C. MANAGEMENT AND BUSINESS PLANS

Singleton Shire Council's operations are directed by its Management Plan, which is prepared and adopted annually.

As previously noted, Strategic Business Plans for Water Supply and Sewerage were last prepared by Council in 1998/99 and are now being updated (completion by mid 2010).

The current 30 Year Capital Works Programs for Water Supply and Sewerage are attached to this Appendix C.

11C. OTHER COMPLIANCE ASPECTS

Local water utilities are also required to comply with a range of other plans and strategies, as discussed below.

a. NSW Water Inquiry

In August 2007, the Minister for Water Utilities announced an Inquiry into the institutional arrangements by which town water supply and sewerage services are provided in country NSW.

The Objectives of this Inquiry are to:

- i) identify the most effective institutional, regulatory and governance arrangements for the long term provision of water supply and sewerage services in the State; and
- ii) ensure that these arrangements are cost effective, financially viable, sustainable, optimise whole-ofcommunity outcomes and achieve integrated water cycle management.

Essentially, the Government expects LWUs to:

- respond and plan in advance for the challenges facing the industry
- be financially self sufficient
- be able to comply with appropriate and stringent environmental and public health standards, and
- implement cost effective service standards.

Singleton Shire Council has made a submission to the Inquiry which essentially favours the status quo – that is, with Council continuing to provide and manage the water and sewerage services within the shire.

Council believes that it can continue to provide acceptable levels of service to its residential and non-residential customers at competitive pricing levels, while still meeting its required statutory and industry performance standards.

However, Council is actively pursuing an Alliance arrangement with its neighbouring Councils (namely, Muswellbrook & Upper Hunter), particularly in the areas of sharing resources and professional & technical expertise).

b. Water Sharing Plans and Water Entitlements

The water supply to Singleton is subject to the requirements of the Water Sharing Plan (WSP) for the Hunter Regulated River Water Source (July 2004).

c. Water Quality and River Flow Objectives

The NSW Water Quality Objectives are the agreed environmental values and long term goals for the State's surface waters. They set out:

- The community's values and uses for the State's rivers, creeks, estuaries and lakes (ie. Healthy aquatic life, water suitable for recreational activities like swimming and boating and drinking water)
- A range of water quality indicators to help assess whether the current condition of waterways supports those values and uses.

The Objectives are consistent with the agreed national framework for assessing water quality, as set out in the ANZECC 2000 Guidelines (ANZECC = Australian and New Zealand Environment and Conservation Council). These Guidelines provide an agreed framework to assess water quality in terms of whether the water is suitable for a range of environmental values (including human uses).

The Water Quality Objectives provide environmental values for NSW waters and the ANZECC guidelines provide the technical guidance to assess the water quality needed to protect those values.

The River Flow Objectives are the agreed high level goals for surface water flow management. They identify the key elements of the flow regime that protect river health and water quality for ecosystems and human uses.

The Objectives are set out in Appendix A; Section 3A, Page A30. Results of water quality monitoring are presented in Table A11, Page A33.

The Objectives are not being met.

d. Water Recycling, Grey Water Reuse, Biosolids Management and Onsite Sewage Management

There is a range of requirements and Guidelines for the management of water/effluent recycling, grey water use, on-site sewage management and biosolids management which apply to the operations of LWUs.

These are discussed below:

Guidelines for Water Recycling

- Managing Health and Environmental Risks (2006)
- Management of Private Recycling Schemes (2007)

The National Environment Protection and Heritage Council, the Natural Resource Ministerial Council and the Australian Health Ministers Conference released the *Australian Guidelines for Water Recycling – Managing Health and Environmental Risks* in November 2006. These Guidelines have been adopted by DWE for the assessment of Section 60 applications for approval to treat and supply recycled water under the *Local Government Act 1993* and Section 292 applications for approval to treat and discharge recycled water under the *Water Management Act 2000*.

The NSW Guidelines for Management of Private Recycled Water Schemes have adopted the principles outlined in the National Guidelines to the approval process for private recycled water schemes, requiring Section 68 Approval. This Guideline is intended to provide practical advice for obtaining approval to install and operate a private recycled water scheme within the NSW legislative framework.

Singleton does not recycle any reclaimed water, although approximately 33% of the water reclaimed from the Sewage Treatment Plant is reused by farmers around the Doughboy Hollow discharge point. The water is used to irrigate pasture.

Potential issue: Development of a water recycling policy.

NSW Guidelines for Grey Water Reuse in Sewered, Single Household Residential Premises (2007)

These Guidelines are to be applied in approving grey water treatment systems in accordance with section 68 of the *Local Government Act, 1993*. Councils must not approve the installation of a grey water treatment system unless the system has received accreditation from NSW Health.

Council encourages the use of grey water within Singleton and distributes relevant information to residents.

Environmental Guidelines for the Use and Disposal of Biosolids Products (DECC 1977)

These Guidelines apply to the management of biosolids and are incorporated in Council's EPA Licence. They:

- Outline the regulatory framework which applies
- specify objectives, design requirements and performance requirements and measurements
- specify the benchmarks to be used for measuring and monitoring performance
- outline the issues to be considered when planning composting and other organic processing facilities

- identify possible environmental management techniques
- list the items to be included in an environmental management plan and a water assessment plan for composting and other organics processing facilities.

Council does not have a Policy for reuse of biosolids and there is no reuse at present.

All sludge from the sewage treatment processes is stabilised in lagoons, dried and disposed to landfill.

A Report by Parsons Brinckerhoff Australia (2009) recommends upgrading of the sludge handling facilities to achieve EPA Grade B stabilisation requirements to enable land use of the biosolids

Potential issue: Potential for reuse of biosolids

On-site Sewage Management

In 1998 the NSW Government introduced a package of local government regulatory reforms and guidelines to ensure more effective regulation and performance supervision by councils of small domestic sewage management facilities. These required councils, where on-site sewage management exists, to prepare and implement an "On-site Sewage Management Strategy".

Singleton's Strategy provides Council and the community with a means of assessing and regulating the installation and operation of all on-site sewage management systems within the Shire. The Strategy is primarily used to assess applications for on-site systems.

e. NSW Groundwater Quality Protection Policy

Singleton Shire Council does not currently draw on groundwater for water supply within the Shire, but may in the future. Council holds entitlements amounting to 4,050 ML/year of groundwater. There are also a number of private Groundwater Licences applying to agricultural enterprises.

Council does have a responsibility to ensure that its municipal operations have no impact on groundwater quality in its area.

The Groundwater Protection Policy which was prepared by the former Department of Land and Water Conservation has been adopted the NSW Office of Water.

The Policy objectives are to:

- 1. slow, halt or reverse any degradation in groundwater resources
- 2. direct potentially polluting activities to the most appropriate local geological setting so as to minimise the risk to groundwater
- 3. establish a methodology for reviewing new developments (industrial, mining, rural and urban) with respect to their potential impact on water resources
- 4. establish triggers for the use of more advanced groundwater protection tools, such as groundwater vulnerability maps or groundwater protection zones

and it is the intent of the Policy that these objectives will be achieved by applying the following management principles:

- 1. all groundwater systems managed such that their most sensitive identified beneficial use is maintained
- 2. town water supplies afforded special protection against contamination
- 3. groundwater pollution prevented so that future remediation not required
- 4. for new developments, the scale and scope of work required to demonstrate adequate groundwater protection is commensurate with the risk the development poses to the groundwater system

- 5. a groundwater pumper shall bear the responsibility for environmental damage or degradation caused by using groundwater that is incompatible with soil, vegetation or receiving waters
- 6. groundwater dependent ecosystems to be afforded protection
- 7. quality protection to be integrated with quantity protection
- 8. the cumulative impacts of developments on groundwater quality to be recognised by all those who manage, use or impact on the resource
- 9. where possible and practicable, environmentally degraded areas to be rehabilitated and their ecosystem support functions restored.

The Policy underpins the parent NSW State Groundwater Policy (1997) which was also prepared by the former Department of Land and Water Conservation.

Potential issues: Urban salinity in Singleton.

f. Stormwater Management Policy

The Strategic Framework for Managing Urban Stormwater which was published in 1996 by the EPA and implemented by the former Stormwater Trust, required Councils to produce Stormwater Management Plans.

Singleton Shire Council adopted its Stormwater Management Plan in 2003.

It would be appropriate for Council to review and update this Plan.

g. Floodplain Development Manual

The Floodplain Development Manual, published in 2005 by the former Department of Natural Resources, was prepared in accordance with the State Government's Flood Prone Land Policy. It guides Councils in the development and implementation of detailed local floodplain risk management plans and robust and effective floodplain risk management outcomes.

The process consists of the following steps:

- Flood Study: which defines the nature and extent of any flood problems
- Floodplain Risk Management Study; determines options in consideration of social, ecological and economic factors relative to flood risk
- Floodplain Risk Management Plan: develops preferred options and publicly exhibits the Plan, which is formally approved by Council after the public exhibition and any necessary revisions are made.
- Plan Implementation: implementation of flood, response and property modification measures (including mitigation works, planning controls, flood warnings, flood readiness and response plans, environmental rehabilitation, on going data collection and monitoring) by Council

It is important to note that management of flood risk is a local government responsibility. Singleton Council has not yet prepared its Floodplain Risk Management Study.

Gap: Floodplain Risk Management Plan not completed.

12C. SUMMARIES - DATA GAPS & POTENTIAL ISSUES

Data Gaps:

Item Comment current, updated, Levels of Service for Water Council has committed to a review and update of the supply & Sewerage Strategic Business Plan in 2010 Performance Report gaps relating to: Council has committed to report on these items for 2009/10 Water Supply energy consumption per ML renewable energy consumption net greenhouse gas emissions Sewerage Council has committed to report on these items for 2009/10 Biosolids reuse energy consumption per ML renewable energy consumption net greenhouse gas emissions loan payments per property Not a LWU responsibility Stormwater Management Plan – update Floodplain Risk Management Strategy Not a LWU responsibility

Potential Issues:

Item Comment

Water Quality:

 Non-compliance with total coliforms and fluoride Current testing & assessment programs to continue concentrations in the Singleton water supply.

 Non-compliances with lead concentrations in the Continued monitoring Jerrys Plains water supply.

 Development of a Water Quality Management To be developed in 2010/11 Plan in accordance with the Australian water **Quality Guidelines**

STP Licence Compliance

 History of non-compliances in relation to BOD, Plant to be augmented in 2010/11. TSS, & O&G licence requirements. EPA monitoring point considered inappropriate.

 Implementation of industry standard Levels of To be considered in current review of SBP Service for water supply & sewerage services.

Performance ranking is below 20% for:

Water Supply

- customer interruption frequencies
- average annual water supplied to customers
- water losses
- residential revenue from usage charges

Sewerage

- debt to equity ratio

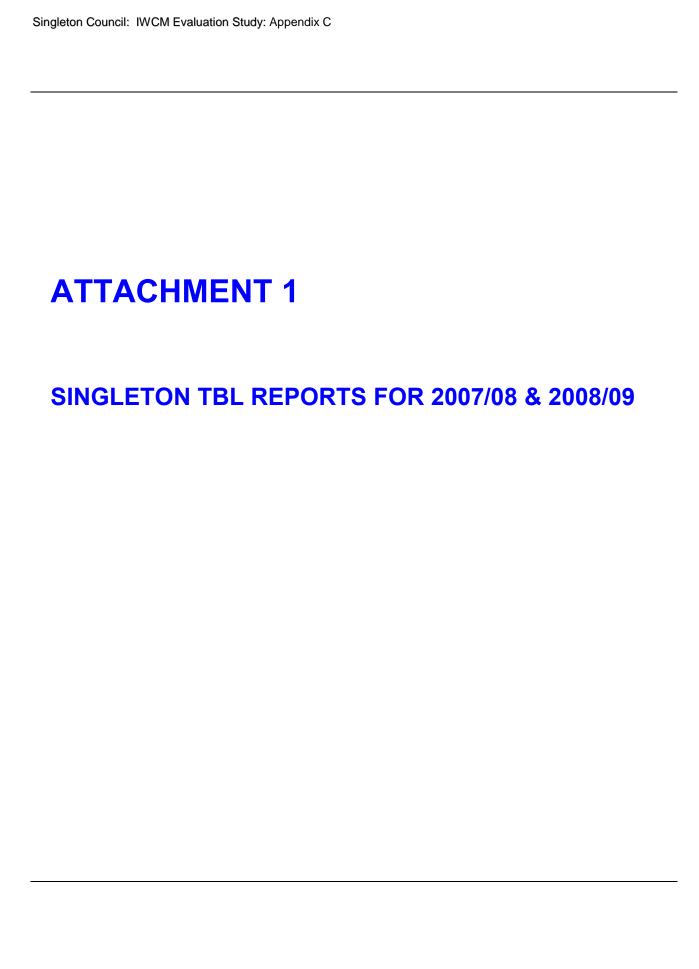
DLM Environmental Consultants Pty Ltd

Stormwater Management

Not a LWU responsibility

Issues for Council (not the LWU):

- updated Stormwater Management Plan
- lack of a Floodplain Risk Management Strategy


Legislative Requirements

- Fluoridation of Jerry's Plains water supply

Other Compliance Aspects

- Development of a water recycling policy
- Potential for reuse of biosolids
- Urban salinity in Singleton

No action currently planned

TBL Water Supply Performance

2007/08

WATER SUPPLY SYSTEM - Singleton Shire Council serves a population of 17,600 (6,250 connected properties). Water is drawn from the Hunter River and Glennies Creek to supply Singleton. The Singleton Shire Council system comprises 1 direct filtration works (30 ML/d), 8 service reservoirs (25 ML) and 6 pumping stations, 97 km of transfer and trunk mains and 162 km of reticulation. The water supply is fully treated.

PERFORMANCE - Singleton Shire Council achieved 70% compliance with Best Practice requirements. The typical residential bill was \$355 which was close to the statewide median of \$370 (Indicator 14). The economic real rate of return was 0.9% which was greater than the statewide median (Indicator 43). The operating cost (OMA) per property was \$371 which was above the statewide median of \$300 (Indicator 49). Water quality complaints were less than the statewide median of 3 (Indicator 25). Compliance with microbiological water quality was 100% with 1 of 1 zones compliant (Indicator 25). 20), physical compliance was 100% (Indicator 19) and chemical compliance was 100% with 1 of 1 zones compliant (Indicator 19b). Current replacement cost of system assets was \$77M (\$11,700 per assessment), cash and investments were \$16.4M, debt was nil and revenue was \$4.1M (excluding capital works grants).

COMPLIANCE WITH BEST- PRACTICE MANAGEMENT GUIDELINES REQUIREMENTS (I) Complete Current Strategic Business Plan & Financial Plan YES (3) Complete performance reporting (by 15 September) (2) Pricing - Full Cost-recovery, without significant cross subsidies
(2a) & (2b) Pricing - Complying Residential Charges (4) Sound water conservation implemented Yes (5) Sound drought management implemented YES (2c) Pricing - Complying non-Residential Charges
(2d) Pricing - DSP with Commercial Developer Charges (6) Integrated water cycle management strategy commer COMPLIANCE WITH ALL REQUIREMENTS 70% TRIPLE BOTTOM LINE (TBL) PERFORMANCE INDICATORS RANKING STATEWIDE LWU 3,001 to RESULT All LWUs MEDIAN NWI No 10,000 Note 2 Note 3 Population served: 17600 Col 2 Col 3 Col 4 Number of connected properties: 6250 Number of assessments: 6570 Col 1 C2 Residential connected properties (% of total) 91 New residences connected to water supply (%) 3.8 A3 24 33 Properties served per kilometre of water main Rainfall (% of average annual rainfall) 110 W11 Total urban water supplied at master meters (ML) 2.320 6.600 Peak week to average consumption (%) 132 140 0.1 0.0 Renewals expenditure (% of current replacement cost of system assets) Employees per 1000 properties 10 Residential tariff structure: inclining block; independent of land value CHARGES & BILLS - 2008/09 130 12 Residential water usage charge (c/kL) for usage All (Note 5) 83 110 Residential access charge per assessment (\$)
Typical residential bill per assessment (\$) 180 13 355 370 4,300 Typical developer charge per equivalent tenement (\$) 4,300 0.8 18 Urban population without reticulated water supply (%) 3 18a Risk based drinking water quality plan? No 100 19 Physical water quality compliance (%) 100 Chemical water quality compliance (%) 100 19b Number of zones with chemical compliance 1 of 1 100 20 Microbiological (E. coli) water quality compliance (%) 100 100 100 НЗ 20a % population with microbiological compliance Water quality complaints per 1000 properties 25 Water service complaints per 1000 properties 30 9 26 27 Customer interruption frequency per 1000 properties 320 37 C15 Average duration of interruption (min) 120 12 2 120 28 A8 30 Number of water main breaks per 100 km of water main 2 9 Drought water restrictions (% of time) 95 3 75 Total days lost (%) 33 Average annual residential water supplied per property (kL)
33a Average annual residential water supplied - COASTAL (kL/property) 173 ENVIRONMENTAL 211 150 RESOURCE GENENT 33b Average annual residential water supplied - INLAND (kL/property) 230 Real losses (leakage) (L/service connection/day) 120 80 A10 34 MANAGE H 710 Energy consumption per Megalitre (kiloWatt hours) Renewable energy consumption (% of total energy consumption)
Net greenhouse gas emissions - WS & Sge (net tonnes CO2 - equivalents per 1000 properties) 650 546 Revenue per property - water (\$) F4 41 Residential revenue from usage charges (% of residential bills) 49 3 71 0.2 F17 43 Economic real rate of return - Water (%) 0.9 -0.1 44 Return on assets - Water (%) 2.4 -2.0 Net Debt to equity - Water (%) -25 Interest cover - Water >100 >100 46 47 Loan payment per property - Water (\$) 47b Net profit after tax - WS & Sge (\$'000) 3 26 1,760 Operating cost (OMA) per 100km of main (\$'000) 1.040 49 Operating cost (OMA) per property (\$) (Note 6) 371 3 300 100 50 Operating cost (OMA) per kilolitre (cents) 100 118 FFFICIENCY 51 Management cost per property (\$) 109 Treatment cost per property (\$) 95 29 52 52 25 53 Pumping cost per property (\$) 3 54 Energy cost per property (\$) 12 13 49 55 Water main cost per property (\$) 73 56 Capital Expenditure per property (\$)

NOTES:

1. The ranking compared with LWUs with 3,001 to 10,000 connected properties (Col 2) is on a % of LWUs basis - relevant for comparing performance with similar sized LWUs - see attachment.

^{1.} The ranking compared with LVWUs with 3,001 to 10,000 connected properties (Cot 2) is on a % of LVVUs basis - relevant for comparing performance with similar sized LVVUs - see attachment.

2. The ranking compared with all LWUs (Cot 3) is on a % of LWUs basis - relevant for comparing performance with all other LWUs - see attachment.

3. The Statewide Median (Cot 4) is on a % of connected properties basis, It best reveals statewide performance by giving due weight to larger LWUs & reducing the effect of smaller LWUs- see attachment.

4. Annual review of key projections and actions in LWU's Strategic Business Plan (SBP) are required, together with annual updating of LWU's financial plan. The SBP should be updated after 3 years.

5. Non-residential Tariff. Access Charge based on Meter Size* (eg. 40mm \$720), Two Part Tariff, For all usage = 83c/kL.

Water supplied to non-residential customers was 40% of potable water supplied excluding non-revenue water.

Non-residential customers provided 40% of the revenue from annual charges and usage charges, Residential tariff

6. The operating cost (OMA)/property was \$371. Components were: management (\$109), operation (\$142), maintenance (\$94), energy (\$12) & chemical (\$5) & bulk purchase (\$9)

TBL Sewerage Performance

2007/08

SEWERAGE SYSTEM - Singleton Council has 1 sewage treatment works providing advanced secondary treatment. The system comprises 20,000 EP treatment capacity (Intermittent Extended Aeration (Activated Sludge)), 14 pumping stations (9.1 ML/d), 19 km of rising mains and 116 km of gravity trunk mains and reticulation. Treated effluent is discharged to river.

PERFORMANCE - Residential growth for 2007/08 was 2.2% which is higher than the statewide median. Singleton Shire Council achieved 89% compliance with Best Practice requirements. The typical residential bill was \$373 which was less than the statewide median of \$440 (Indicator 12). The economic real rate of return was 2% which was greater than the statewide median (Indicator 46). The operating cost per property (OMA) was \$247 which was less than the statewide median of \$320 (Indicator 50). Sewage odour complaints were close to the statewide median of 0.4 (Indicator 21). Council complied with the environmental regulator for effluent discharge. The current replacement cost of system assets was \$52M (\$9,400 per assessment), cash and investments were \$9M, debt was nil and revenue was \$2.7M (excluding capital works grants).

COMPLIANCE WITH BEST-PRACTICE MANAGEMENT GUIDELINES REQUIREMENTS

(1) Con (2)	Pricing (2a) Pri (2b) Pri	- full of	ategic business plan & financial plan ost-recovery, without significant cross subsidies Complying Residential Charges Complying Non-Residential Charges Complying Trade Waste Fees and Charges Complying Trade Waste Fees and Charges Test (2d) Pricing - DSP with commerce (2e) Pricing - Liquid trade waste Yes (3) Complete performance Yes (4) Integrated water cycle in Yes (COMPLIANCE WITH ALL I	e approvals & policy reporting (by 15 s nanagement strat	eptember)	Yes Yes YES 89%
TRIP	LE BOT		LINE (TBL) PERFORMANCE INDICATORS No.	LWU RESULT	3,001 to All 10,000 LWJs Note 1 Note 2	STATEWIDI MEDIAN Note 3
UTILITY	CHARACTERISTICS	C8 C6 A6 W18	Number of connected properties: 5310 Number of residential connected properties: 4720 New residences connected to sewerage (%) Properties served per kilometre of main Volume of sewage collected (Mt.) Renewals expenditure (% of current replacement cost of system assets)	2.2 39 1,280 0.9	1 1 1	1.5 40 4,300 0.0
	CHARGES & BILLS - 2008/09	P4 P4.1 P6	Bescription of residential tariff structure: Residential access charge / assessment (\$) Typical residential bill / assessment (\$) Typical developer charge / equivalent tenement Non-residential sewer usage charge (c/kL)	0.9 and value (Note 5) 373 373 2,550 85	1 1 2 2 2 2 4 3 3 3	1.6 440 440 3,900 85
SOCIAL	НЕАГТН	E3 E4 E5	16 Urban properties without reticulated sewerage service (%) 17 Percent of sewage treated to a tertiary level (%) 18 Percent of sewage volume treated that complied (%) 19 Sewage treatment works compliant at all times	6.3 100 100 1 of 1	4 3 1 1 1	3.9 84 100
	SERVICE	C11 C16	21 Odour complaints per 1000 properties 22 Service complaints per 1000 properties 23a Average sewerage interruption (minutes) 25 Total days lost (%)	0.4 9 180 5.0	4 2 2 5 5 5 5 5	0.4 11 120 3.2
WENTAL	NATURAL RESOURCE MANAGEMENT	W19 W26 W27 E8	26 Volume of sewage collected per property (kL) 26a Total recycled water supplied (ML) 27 Recycled water (% of effluent recycled) 28 Biosolids reuse (%) 30 Energy consumption per Megalitre (kiloWatt hours) 31 Renewable energy consumption (% of total energy consumption) 32 Net greenhouse gas emissions - WS & Sge (net tonnes CO2 equivalents per 1000 properties)	241 430 33	5 5 2 2 2 2	240 300 9 100 830 0 350
ENVIRONMENTAL	ENVIRONMENTAL PERFORMANCE	A12 E13 E4	33 90 Percentile licence limits for effluent discharge: BOD 30 mg/L; SS 30 mg/L; Total N 15 mg/L; Total P 10 mg/L 34 Compliance with BOD in licence (%) 35 Compliance with SS in licence (%) 36 Sewer main chokes and collapses per 100 km of main 37 Sewer overflows per 100 km of main 38 Sewage treated that was compliant (%)	100 100 18 10 100	1 1 1 1 1 1 1 2 3 4 1 1	100 100 44 12 100
OMIC	FINANCE	F6 F18 F22 F23 F24	42 Revenue per property - Sge (\$) 43 Revenue from non-residential plus trade waste charges (% of total revenue) 44 Revenue from trade waste charges (% of total revenue) 45 Economic real rate of return - Sge (%) 46a Return on assets - Sge (%) 47 Net Debt to equity - Sge (%) 48 Interest cover - Sge 48a Loan payment per property - Sge (\$) 47b Net profit after tax - WS & Sge (\$'000)	510 15 0.8 2.0 3.6 -25 >100	4 4 3 2 2 1 1 1 5 5 1 1 1 1 1	599 15 0.8 1.1 1.1 -4 >100 27 415
ECONOMIC	EFFICIENCY	F12	49 Operating cost (OMA) per 100 km of main (\$'000) 50 Operating cost (OMA) per property (\$) Note 8 51 Operating cost (OMA) per kilolitre (cents) 52 Management cost per property (\$) 53 Treatment cost per property (\$) 54 Pumping cost per property (\$) 55 Energy cost per property (\$) 56 Sewer main cost per property (\$) 57 Capital Expenditure per property (\$)	980 247 103 80 77 18 14 68	2 3 1 2 2 2 2 2 2 2 1 1 2 1 4 5 3 3	1,330 320 133 107 101 46 19 40 268

- NOTES:

 1. Council's ranking in Col 2 is based on a comparison of its result in Col 1 with the percentiles for LWUs with 3,001 to 10,000. This is on a % of LWUs basis see also Note 2.

 2. Council's ranking in Col 3 is based on a comparison of its result in Col 1 with the percentiles for all LWUs. This is also on a % of LWUs basis as this is relevant for comparing the performance of an LWU with all other LWUs see attachment.

 3. The Statewide Median (Col 4) is on a % of connected properties basis. It best reveals statewide performance giving due weight to larger LWUs & reducing the effect of smaller LWUs 4. Annual review of the key projections & actions in LWUs Strategic Business Plan (SBP) are required, together with annual updating of LWUs Financial Plan. The SBP should be updated after 3 years.

 5. Non-residential: Access Charge based on square of size of service connection, sewer usage charge 85c/kL.

 6. Non-residential customers provided 15% of the revenue from annual charges, usage and trade waste charges.

 7. Compliance with Total N in Licence was 100%. Compliance with Total P in Licence was 100%.

 8. The operating cost (OMA)/property was \$247. Components were: management (\$80), operation (\$49), maintenance (\$104), energy (\$14) and chemical (\$1).

TBL Water Supply Performance

2008-09

WATER SUPPLY SYSTEM - Singleton Shire Council serves a population of 18,400 (6,300 connected properties). Water is drawn from the Hunter River and Glennies Creek to supply Singleton. The Singleton Shire Council system comprises 1 direct filtration works (30 ML/d), 8 service reservoirs (25 ML) and 7 pumping stations, 97 km of transfer and trunk mains and 163 km of reticulation. The water supply is fully treated.

PERFORMANCE - Singleton Shire Council achieved 90% compliance with Best Practice requirements. The typical residential bill was \$419 which was close to the statewide median of \$430 (Indicator 14). The economic real rate of return was 0.2% which was less than the statewide median (Indicator 43). The operating cost (OMA) per property was \$432 which was above the statewide median of \$330 (Indicator 49). Water quality complaints were less than the statewide median of 3 (Indicator 25). Compliance with microbiological water quality was 100% with 1 of 1 zones compliant (Indicator 20), physical compliance was 100% (Indicator 19) and chemical compliance was 100% with 1 of 1 zones compliant (Indicator 19b). Current replacement cost of system assets was \$80M (\$12,100 per assessment), cash and investments were \$17.9M, debt was nil and revenue was \$4.2M (excluding capital works grants).

COMPLIANCE WITH BEST- PRACTICE MANAGEMENT GUIDELINES REQUIREMENTS

(I) C	omplete Current Strategic Business Plan & Financial Plan	YES	(3) Sound water conservation implemented	YES
(2)	(2a) Pricing - Full Cost Recovery, without significant cross subsidies	Yes	(4) Sound drought management implemented	YES
1	(2b) & (2c) Pricing - Complying Residential Charges		(5) Complete performance reporting (by 15 September)	YES
	(2c) Pricing - Complying non-Residential Charges	Yes	(6) Integrated water cycle management strategy	YES
	(2d) Pricing - DSP with Commercial Developer Charges	Yes	COMPLIANCE WITH ALL REQUIREMENTS	90%

				plying non-Residential Charges with Commercial Developer Charges Yes COMPLIANCE WITH A						90%
PLE				E (TBL) PERFORMANCE INDICATORS		LWU RESULT	٠,	RANI 8,001 to 10,000	KING All LWUs	STATE
100/9		NWI			-				Note 2	Note
		C1	1	Population served: 17900 Number of connected properties: 6300 Number of assessments: 6630		Col 1		Note 1 Col 2	Col 3	Col
		C4	2		ī	88	Tor	COIZ	0013	92
	SS	C2	3	Residential connected properties (% of total)			%	5	5	0.
	TSI		4	New residences connected to water supply (%)		0.2	76	9	9	1000
	CHARACTERISTICS	A3	5	Properties served per kilometre of water main	Prop/km	24	%			3
	SAC		6	Rainfall (% of average annual rainfall)		93	1	3	4	11
	Y.	W11		Total urban water supplied at master meters (ML)		2,680	ML	0		6,3
	0		8	Peak week to average consumption (%)		187	%	3	3	14
			9	Renewals expenditure (% of current replacement cost of system assets)		0.1	%	5	5	0
		100	10		er 1,000 prop	1.0		1	1	1.
	CHARGES & BILLS - 2009-10	P1		Residential tariff structure: inclining block; independent of land value	1	89	7-04	4	4	15
200	8.8 E			Residential water usage charge (c/kL) for usage <450 c/kL (Note 5)	s	180	c/kL	2	2	13
	3GES & BI	-		Residential access charge per assessment (\$)				2	2	43
	HAR.	P3		Typical residential bill per assessment (\$)	\$	419		230	745	1000
	O		15	Typical developer charge per equivalent tenement (\$)	- 5	4,540	1	2	2	4,6
		0.00		Urban population without reticulated water supply (%)		2.9	%	3	3	0
		H6		Risk based drinking water quality plan?		No				
	王			Physical water quality compliance (%)		100	%	1	1	1
	HEALTH			Chemical water quality compliance (%)		100	%	1	1	1
	I	H4	19b	Number of zones with chemical compliance		1 of 1				
5			20	Microbiological (E. coli) water quality compliance (%)		100	%	1	1	1
		НЗ	20a	% population with microbiological compliance		100	%	1	1	1
		C9	25	Water quality complaints per 1000 properties	er 1,000 prop	1	1	3	3	
	S	C10	26	Water service complaints per 1000 properties	er 1,000 prop	6		2	3	
	EVE	C17	27	Average frequency of unplanned interruptions per 1000 properties	er 1,000 prop	318		5	5	3
	SERVICE LEVELS	C15	28	Average duration of interruption (min)	min	120		1	2	1
	SVIC SVIC	A8		Number of water main breaks per 100 km of water main	per 100km	12	1	3	3	
	SE		31	Drought water restrictions (% of time)		0	%	1	1	1
			32	Total days lost (%)		4.1	%	4	5	2
,		W12	33	Average annual residential water supplied per property (kL)	-	269	KL	3	3	1
	벙		33a	Average annual residential water supplied - COASTAL (kL/property)		269	kL	5	5	1
Í	OUR		33b	Average annual residential water supplied - INLAND (kL/property)			kL.			2
	NATURAL RESOURCE MANAGEMENT	A10	34	Real losses (leakage) (L/service connection/day)	L/connectn/d	70		3	3	(
	MAN		35	Energy consumption per Megalitre (kiloWatt hours)	kWh		7			6
2	NA		36	Renewable energy consumption (% of total energy consumption)	200		%			
		E12	36a	Net greenhouse gas emissions - WS & Sge (net tonnes CO2 - equivalents per 1000 prop	erties)					3
		F5	40	Revenue per property - water (\$)	\$	670		4	4	5
		F4	41	Residential revenue from usage charges (% of residential bills)		57	%	3	4	
	700	F17	43	Economic real rate of return - Water (%)		0.2	%	3	3	(
빏	NG.		44	Return on assets - Water (%)		2.2	%	2	1	-0
	FINANCE	F22	45	Net Debt to equity - Water (%)		0	%	1	2	(
	-	F23	46	Interest cover - Water		>100		1	1	(
			47	Loan payment per property - Water (\$)	\$	0		4	4	
		F24	47b	Net profit after tax - WS & Sge (\$'000)	\$'000	1,400		1	1	
			48	Operating cost (OMA) per 100km of main (\$'000)	\$'000	1,050		4	3	1,
		F11	49	Operating cost (OMA) per property (\$) (Note 6)	\$/prop	432		3	4	3
			50	Operating cost (OMA) per kilolitre (cents)	c/kL	101	1	3	3	1
	NC.		51	Management cost per property (\$)	\$/prop	135		3	4	1
	EFFICIENCY		52	Treatment cost per property (\$)	\$/prop	130		4	4	
2 1	H		53	Pumping cost per property (\$)	\$/prop	56		4	4	
	ш		54	Energy cost per property (\$)	\$/prop	11		2	2	
								4		100
			55	Water main cost per property (\$)	\$/prop	66		3	3	5

- NOTES:

 1. The ranking compared with LWUs with 3,001 to 10,000 connected properties (Col 2) is on a % of LWUs basis relevant for comparing performance with similar sized LWUs see attachment.

 2. The ranking compared with all LWUs (Col 3) is on a % of LWUs basis relevant for comparing performance with all other LWUs see attachment.

 3. The Statewide Median (Col 4) is on a % of connected properties basis. It best reveals statewide performance by giving due weight to larger LWUs & reducing the effect of smaller LWUs- see attachment.

 4. Annual review of key projections and actions in LWU's Strategic Business Plan (SBP) are required, together with annual updating of LWU's financial plan. The SBP should be updated after 3 years.

 5. Non-residential rariff. Access Charge based on Meter Size* (eg. 40mm \$720), Two Part Tariff, For all usage = 89c/k...
 Water supplied to non-revenue water.
 Non-residential customers was 38% of potable water supplied excluding non-revenue water.
 Non-residential customers provided 31% of the revenue from annual charges and usage charges. Residential tariff

 6. The operating cost (OMA)/property was \$432. Components were: management (\$135), operation (\$166), maintenance (\$101), energy (\$11) & chemical (\$10) & bulk purchase (\$9).

TBL Sewerage Performance

2008-09

SEWERAGE SYSTEM - Singleton Council has 1 sewage treatment works providing advanced secondary treatment. The system comprises 20,000 EP treatment capacity (Intermittent Extended Aeration (Activated Sludge)), 14 pumping stations (9.1 ML/d), 19 km of rising mains and 116 km of gravity trunk mains and reticulation. Treated effluent is

PERFORMANCE - Residential growth for 2008-09 was 0.8% which is similar to the statewide median. Singleton Shire Council achieved 100% compliance with Best Practice requirements. The typical residential bill was \$387 which was less than the statewide median of \$470 (Indicator 12). The economic real rate of return was 0.5% which was less than the statewide median (Indicator 46). The operating cost per property (OMA) was \$275 which was less than the statewide median of \$340 (Indicator 50). Sewage odour complaints were less than the statewide median of 0.4 (Indicator 21). Council complied with the environmental regulator for effluent discharge. The current replacement cost of system assets was \$55M (\$9,800 per assessment), cash and investments were \$9M, debt was nil and revenue was \$2.5M (excluding capital works grants).

COMPLIANCE WITH BEST-PRACTICE MANAGEMENT GUIDELINES REQUIREMENTS

(1) Complete current strategic business plan & financial plan	YES	(2e) Pricing - DSP with commercial developer charges	Yes
 (2a) Pricing - Full Cost Recovery without significant cross subsidie 	Yes	(2f) Pricing - Liquid trade waste approvals & policy	Yes
(2b) Pricing - Complying Residential Charges		(3) Complete performance reporting (by 15 September)	YES
(2c) Pricing - Complying Non-Residential Charges	Yes	(4) Integrated water cycle management strategy	YES
(2d) Pricing - Complying Trade Waste Fees and Charges	Yes	COMPLIANCE WITH ALL REQUIREMENTS	100%

				plying Non-Residential Charges plying Trade Waste Fees and Charges Yes Yes COMPLIANCE WITH				у		100%
RIPL	Е ВОТ	TOM NWI C5		E (TBL) PERFORMANCE INDICATORS Population served: 15,000 Number of assessments: 5,560		LWU RESULT		3,001 to 10,000	KING All LWUs	STATEWID MEDIAN
	2	C8	2	Number of connected properties: 5,340				Note 1	Note 2	Note 3
_	CHARACTERISTICS	C6	3	Number of residential connected properties: 4,760		Col 1		Col 2	Col 3	Col 4
UTILITY	CIE	1,0000	4	New residences connected to sewerage (%)		0.8	%	2	3	0.8
5	4RA(A6 W18	5	Properties served per kilometre of main Volume of sewage collected (ML)	Prop/km	39 1,360	ML		l i	4,600
	공	AN IO	7	Renewals expenditure (% of current replacement cost of system assets)		0.9	%	2	1	0.1
			8	Employees per 1000 properties	per 1,000 prop	1.1		1	2	1.6
	. 0	P4		Description of residential tariff structure: access charge/prop; independent of lan	d value (Note	5)				_
	CHARGES & BILLS - 2009-10	P4.1	11	Residential access charge / assessment (\$)	S	387		2	2	470
	ARG 3-2	P6	12	Typical residential bill / assessment (\$)	\$	387		2	2	470
	공급		13	Typical developer charge / equivalent tenement (\$)	\$	2,720		4	3	3,900
			14	Non-residential sewer usage charge (c/kL)	c/kL	110	-	3	3	100
SOCIAL	I	50	16			3.4	%	3	2	3.9 85
3	HEALTH	E3 E4	17 18	Percent of sewage treated to a tertiary level (%)		100	%	1	1	100
n	뽀	E4 E5	19	Percent of sewage volume treated that complied (%) Sewage treatment works compliant at all times		1 of 1	"	'	'	100
			21	Odour complaints per 1000 properties	per 1,000 prop	0.2	i	3	3	0.4
	SERVICE LEVELS	C11	22	Service complaints per 1000 properties	per 1,000 prop	13		2	3	12
	ER	C16	23a	Average sewerage interruption (minutes)		180	min	5	5	116
	05 -		25	Total days lost (%)	_	4.2	%	5	5	2.4
		W19	26	Volume of sewage collected per property (kL)		254	kL	5	4	230
	JRCE	W26	26a	Total recycled water supplied (ML)		450	ML	2	2	320
	ESOL	W27	27	Recycled water (% of effluent recycled)		33	%	2	2	10
	NATURAL RESOURCE MANAGEMENT	E8	28	Biosolids reuse (%)			% kwh			710
Ĭ.	ATUR		30	Energy consumption per Megalitre (kiloWatt hours)			%			0
E H	2	E12	32	Renewable energy consumption (% of total energy consumption) Net greenhouse gas emissions - WS & Sge (net tonnes CO2 equivalents per 1000 properties)			"			350
ENVIRONMENTAL			33	90 Percentile licence limits for effluent discharge:	-		4			
\(\frac{1}{2}\)	H H			BOD 30 mg/L; SS 30 mg/L; Total N 15 mg/L; Total P 10 mg/L			1			
Ž.	IANC		34	Compliance with BOD in licence (%)		100	%	1	1	100
	ORN		35	Compliance with SS in licence (%)	X800 2	100	%	1	1	100
	ENVIRONMENTAL PERFORMANCE	A12	36	Sewer main breaks and chokes per 100 km of main	per 100km main per 100km main	41 10		1 2	2 4	53
	9.4	E13	37 39	Sewer overflows per 100 km of main Non res & trade waste % of total sge volume	per tookiitiitain	10	%	2	4	16
		F6	42	Revenue per property - Sge (\$)	- s	470	1			650
			43	Revenue from non-residential plus trade waste charges (% of total revenue)		15	%	4	4	16
			44			0.8	%	3	3	1.2
	S	F18	46	Economic real rate of return - Sge (%)		0.5	%	3	3	1.1
	INANCE	F22	46a 47	Return on assets - Sge (%)		2.3	%	1 2	1 2	0.5
	ш	F23	48	Net Debt to equity - Sge (%) Interest cover - Sge		>100	1"	1	1	2
ပ		120	48a		\$					55
ECONOMIC		F24	47b	Net profit after tax - WS & Sge (\$'000)	\$000	1,400				-173
Ž.			49	Operating cost (OMA) per 100 km of main (\$'000)	\$000	1,090		2	3	1,380
Щ		F12	50		\$	275	1	1	2	340
	5		51		c/kL \$	109 85		1 2	1 2	145 123
	EFFICIENCY		52 53	Management cost per property (\$) Treatment cost per property (\$)	\$	67		1	1	108
	FFIC		54	Pumping cost per property (\$)	\$	14		1	1	50
	ш		55	Energy cost per property (\$)	\$	16		2	2	20
			56	Sewer main cost per property (\$)	\$	105		5	5	40
		F15	57	Capital Expenditure per property (\$)	\$	130		4	3	248

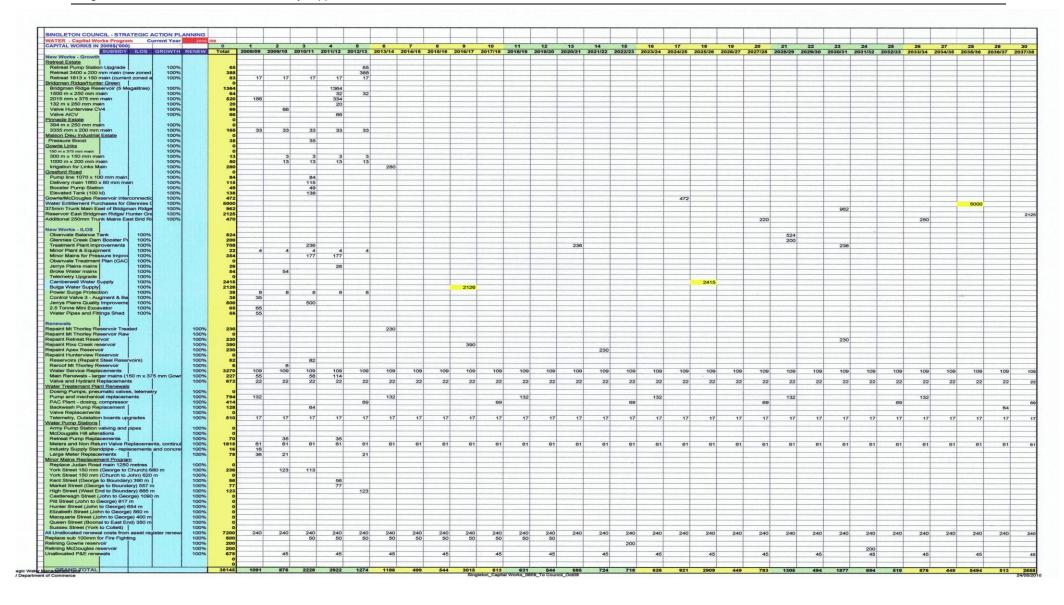
- NOTES:

 1. Council's ranking in Col 2 is based on a comparison of its result in Col 1 with the percentiles for LWUs with 3,001 to 10,000. This is on a % of LWUs basis see also Note 2.

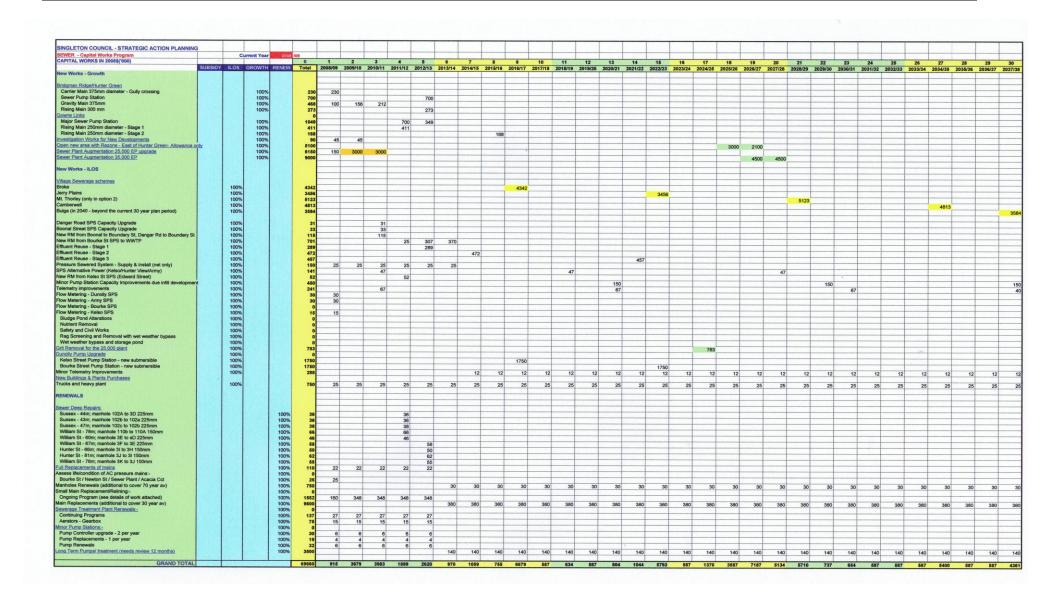
 2. Council's ranking in Col 3 is based on a comparison of its result in Col 1 with the percentiles for all LWUs. This is also on a % of LWUs basis as this is relevant for comparing the performance of an LWU with all other LWUs see attachment.

 3. The Statewide Median (Col 4) is on a % of connected properties basis. It best reveals statewide performance giving due weight to larger LWUs & reducing the effect of smaller LWUs.
- 4. Annual review of the key projections & actions in LWU's Strategic Business Plan (SBP) are required, together with annual updating of LWU's Financial Plan. The SBP should be updated after 3 years.

 5. Non-residential: Access Charge based on square of size of service connection, sewer usage charge 110c/kL.


 6. Non-residential customers provided 15% of the revenue from annual charges, usage and trade waste charges.

 7. Compliance with Total N in Licence was 100%. Compliance with Total P in Licence was 100%.


 8. The operating cost (OMA)/property was \$275. Components were: management (\$85), operation (\$66), maintenance (\$107), energy (\$16) and chemical (\$2).

ATTACHMENT 2

FORWARD CAPITAL WORKS PROGRAMS FOR WATER SUPPLY AND SEWERAGE

Proposed Capital Works Program – WATER SUPPLY

Proposed Capital Works Program - SEWERAGE

APPENDIX D

DEMAND MANAGEMENT & PROJECTIONS

Contents i of ii

PURPOSE

This Appendix presents the results of demand management modelling of the Singleton water supply system and identifies and addresses the potential for the introduction of demand management measures over the next 30 years.

The Document will form part of the IWCM Evaluation Study Report and is provided initially for review and comment.

If no comment or feedback is received from Council, the document will be used to develop the Evaluation Report and will form an Appendix to that Report

Purpose i

Contents

1.	INTRODUCTION	1
	1.1 BACKGROUND	1
	1.2 METHODOLOGY AND DATA	1
2.	CURRENT WATER PRODUCTION AND CONSUMPTION	3
	2.1 WATER CONSUMPTION PROFILE	
	2.2 UNACCOUNTED FOR WATER	
3.	ANALYSIS OF HISTORICAL WATER PRODUCTION	5
	3.1 INTRODUCTION	
	3.2 CLIMATE DATA	
	3.3 MODEL RESULTS	
4.	WATER DEMAND AND WASTEWATER FLOW FORECASTS	g
	4.1 INTRODUCTION	
	4.2 DATA	g
	4.2.1 DEMOGRAPHICS	
	4.2.2: WATER USE DATA	
	4.2.3: EVAPORATIVE COOLING	11
	4.2.4: RESIDENTIAL INTERNAL WATER USE	
	4.2.5: OPERATIONS AND TREATMENT COSTS	11
	4.2.6: FUTURE INFRASTRUCTURE WORKS	12
	4.2.7: WATER PRICING	14
	4.3 UNDERLYING ASSUMPTIONS	
	4.4 IWCM SCENARIOS	
	4.4.1: SCENARIOS	
	4.4.2: ASSESSMENT OF SCENARIOS	
	4.4.3: FUTURE WATER DEMANDS	18
5.		
6.	SUMMARY AND CONCLUSIONS	26
7	DEFEDENCES	20

Tables

Table D1: Data Used in Modelling	2
Table D2: Population Supplied with Filtered Water (2008/09)	3
Table D3: Potable Water Consumption by Customer Category (2007/08)	4
Table D4: Water Production, Consumption & Losses (Singleton WTP)	5
Table D5: Climate Data	6
Table D5: Climate Data (cont'd)	7
Table D6: Demographic Data Used in Model	10
Table D7: Water Use Data	10
Table D8: Water Used By Paying Customers & Other Users (2007/08)	11
Table D9: Operating and Treatment Costs (2009)	12
Table D10: Planned Future Major Water Infrastructure Projects	13
Table D11: Planned Future Major Wastewater Infrastructure Projects	13
Table D12: Water Charges	14
Table D13: Underlying Assumptions (Water Use) used in DEUS End Use Model	15
Table D14: IWCM Scenarios	16
Table D15: Descriptions of Water Demand Management Measures	17
Table D16: Water Savings and B/C ratios for Demand Management Measures	18
Table D17: Average Annual Water Demands and Assessed Water Savings	19
Figures	
Figure D1: Monthly Temperature and Rainfall variations (showing changes to lo	
averages from 1995)	7
Figure D2: Total Annual Treated Water Production - Singleton	8
Figure D3: Peak day to Average Day Ratio	8
Figure D4: Total Water Demand Forecasts – 0.8% Growth	19
Figure D5: Peak Day Demand Forecasts – 0.8% Growth	20
Figure D6: Total Per Capita Water Demand Forecast Scenarios – 0.8% Growth	21
Figure D7: Wastewater Flows Scenarios – 0.8% Growth	22
Figure D8: Wastewater Wet Weather Flows Scenarios – 0.8% Growth	22

Attachments

Attachment A: Definitions

Attachment B: Assumptions Used in Demand Management Model

Attachment C: End Use Model Tables

Contents

DEMAND MANAGEMENT MODELLING

1. INTRODUCTION

1.1 BACKGROUND

Singleton Council (SC) is responsible for the management and operation of water supply and sewerage in the Singleton Local Government Area.

This Demand Management Strategy identifies and addresses the potential for the introduction of demand management measures in the Singleton service area over the next 30 years.

1.2 METHODOLOGY AND DATA

The following aspects have been undertaken as part of this assessment:

- analysis of the current water production (water treatment) records to estimate Unaccounted for Water (UFW)
- determination of current water consumption by customer category
- Analysis of the historical water production records to determine a starting point for water demand forecasting and to estimate the current peak to average demand ratio.
- Development and analysis of integrated scenarios, each containing different water demand management measures. The Traditional Scenario, which provides baseline data against which the impacts of different water demand management measures can be compared, was also assessed.
- Analysis of the water management scenarios. The following aspects have been assessed:
 - preliminary cost/benefit ratios and water savings for the individual water demand management measures that were included in the integrated scenarios; and
 - water demand and effluent generation forecasts for the next 30 years for each of the scenarios.

[Note: The cost/benefit ratios are calculated by the Model, utilising Council's OMA costs and a range of assumptions. Basically, the ratios reflect the relative ranking of various demand measures, if they were to be implemented by Council. Definitions of the various aspects incorporated in the Model are included as Attachment A and the basis for assessing the cost/benefit ratios are appended as Attachment B]

Water production and consumption data for the various customer categories were sourced from BRC's data base and other sources. The relevant data are summarised in Table D1.

The DWE Demand Side Management Decision Support System Software-Simplified (Version S1.1) (DEUS, 2006), supplemented with additional data, was used to assess the water management scenarios.

Item	Source	Comments
Climate &	Climate data (daily rainfall, evaporation &	The historical demand
Daily	maximum daily temperature) was obtained from	was not climate corrected
Weather	the Jerrys Plains Post Office Weather Station	(insufficient reliable
	(No. 061086) records and the Singleton STP	historical water
	Station (No. 061397).	production data) Climate
	Data was cross-checked against data from the	data is included here for
	Cessnock Airport weather Station (No. 061260)	information only.
Population	Population data for Singleton was accessed from	The total population of
Data	the 2006 Bureau of Statistics Census Tables.	Singleton urban area was
		reported as 13,664.
		Current 2008/09
		population is estimated at 17,919
Demographic	From Council's customer data base.	A population growth rate
Data		of 0.8 % ⁽¹⁾ pa was used.
Daily Water	Daily meter readings of water treated at the	Daily data is available
Production	Water Treatment Plants.	from January 1990.
ML/d		
Water	Water consumption records were obtained from	Consumption data was
Consumption	Council's data base.	allocated across the key
110		customer categories.
Water	Recorded consumption (billing records) and	Water losses were
Losses	production data from the Treatment Plant was used.	assessed as the
	used.	difference between
		treated and consumption billed for.
Other Data	Relevant data was sourced from Council's data	Pumping & treatment
Other Data	bases.	costs for both water
	54000.	supply and sewerage.
		Augmentation costs for
		planned 30 Year
		Capital Works.
		Water Prices
		(volumetric charge per
		kilolitre).

Table D1: Data Used in Modelling

Note (1):

Based on Census information, population in Singleton has increased at an average rate of 1.75% pa since 2001. For the purposes of this Water Demand analysis, a growth rate of 0.8% pa has been used for population growth and 1.0% pa for growth I dwellings.

2. CURRENT WATER PRODUCTION AND CONSUMPTION

2.1 WATER CONSUMPTION PROFILE

Council's bulk supply is drawn from Glennies Creek Dam, operated by NSW State Water

The total usage in Singleton in 2008/09 was 2,414 ML (including losses)

Details of customers supplied are shown in Table D2.

Population (Served with Water)	17,919
Assessments	
- Total	6,628
- Residential	5,839
- Non Residential	789

Table D2: Population Supplied with Filtered Water (2008/09)

(Source: SC)

Water consumption data for the various customer categories was provided by Council and is reproduced below.

The following categories are included in Council's customer data base:

Residential Single	Residential dwellings			
Residential Multi	Residential Strata and multi flats, aged units and boarding houses.			
Commercial	Workshops, offices and retail, hotels and motels, caravan parks, bowling and golf clubs, private recreation, agriculture and vacant businesses.			
Industrial	Heavy and light industry, industrial vacant and strata.			
Institutional	Educational establishments, hospitals (private and public), Council buildings, Church and religious buildings and public buildings.			
Parks and Open Space	Public open space			
• Rural	Rural and village residential			
Other Treated Water Users	Uncategorised water uses.			

Water consumption, by customer categories for the **2008/09** billing period, are shown in Table D3 below:

Category	No. of Accounts	Consumption	%
		(ML)	
Residential (total)	5,839	1,490	61.7
Commercial	544	428	17.7
Industrial	1	46	1.9
Public	161	169	7.0
Parks & Open Space	-	-	-
Rural	92	41	1.7
Other – non rateable	-	-	-
Unaccounted for Water	Unknown	240	9.9
(Losses)			
Totals	6,637	2,414	100

Table D3: Potable Water Consumption by Customer Category (2007/08)

[Note: The data provided for 2008/09 doesn't match that reported in the Performance Report submitted to the Office of Water].

2.2 UNACCOUNTED FOR WATER

Unaccounted for water (UFW) is the difference between the water treated at the Filtration Plant and actual metered consumption. It can include unbilled authorised consumption, unauthorised consumption, apparent losses and real (system) losses.

Data for the period from 2003/04 to 2007/08 indicates a range of UFW results – from 6.1% to 10.8%. The average UFW over the period was 8.0%; as shown in Table D4. This water loss has been used in the modelling.

Council is implementing its own (in-house) leak detection program (involving inspection of supply zones and isolated rising mains). Some positive results in detecting and repairing leaks have already been achieved.

Year	Singleton Treated Water	Potable Water	Potable Water Losses			
T Car	Production (ML/annum)	Consumption (ML/annum)	ML	%		
1991/92	3,092					
1992/93	2,828					
1993/94	2,913					
1994/95	3,331					
1995/96	3,111					
1996/97	2,991					
1997/98	3,885					
1998/99	3,250					
1999/00	2,875					
2000/01	2,872					
2001/02	2,984					
2002/03	3,185					
2003/04	2,801	2,284	517	8.5		
2004/05	2,719	2,477	242	8.9		
2005/06	3,138	2,798	338	10.8		
2006/07	2,779	2,303	476	7.1		
2007/08	2,313	1,940	373	6.1		
2008/09	2,587	2,414	173	6.7		
Annual	2.094	2 260	353	8.0		
Average	2,981	2,369	ათა	0.0		

Table D4: Water Production, Consumption & Losses (Singleton WTP)

3. ANALYSIS OF HISTORICAL WATER PRODUCTION

3.1 INTRODUCTION

Analysis of historical water production for Singleton was based on actual, observed production data. Due to the limited annual consumption data available, it is considered that there is not likely to be a significant difference between the observed and climate corrected data.

3.2 CLIMATE DATA

Key climate characteristics are summarised in Table D5.

Rainfall is relatively low; at an annual average of 641 mm. The wettest months are January and February, although rainfall is reasonably consistent from October to March. The lowest rainfall month is August. Average annual evaporation exceeds annual rainfall by almost 1000 mm annually. The data presented is long term (1884 to 2009).

Table D5: Climate Data

(Source: Bureau of Meteorology – Jerrys Plains & Cessnock Weather Stations)

Month	Mean Daily Maximum Temp. (°C)	Decile 9 Max. Temp. (°C)	Mean Daily Minimum Temp. (°C)	Mean Monthly Rainfall (mm)	Lowest Recorded Rainfall (mm)	Daily Evaporation (mm)
January	31.7	37.9	17.1	76.9	0 (1903)	220
February	30.9	36.6	17.1	72.5	0 (1940)	168
March	28.9	33.7	15.0	59.1	0 (1909)	155
April	25.3	29.8	10.9	44.1	0 (1980)	120
May	21.3	25.0	7.5	40.4	0 (1957)	90
June	18.0	21.0	5.3	47.6	2.3 (1953)	60
July	17.4	20.2	3.8	43.3	0.3 (1972)	71
August	19.4	23.3	4.4	36.4	0 (1982)	81
September	22.9	27.9	7.0	41,7	0 (1980)	111
October	26.3	31.7	10.3	51.9	1.4 (1988)	164
November	29.2	35.3	13.2	59.8	1.0 (1915)	195
December	31.3	36.7	15.7	67.7	0 (1884)	205
Annual	25.2	-	10.6	641.4	234.2 (1950)	1640

Climate data for the 12 months from January 2009 to December 2009 is presented for comparison in the Table below.

It is interesting to note that 2009 was cooler than the long term averages (6.7% lower mean maximum temperatures), but much warmer overnight - 16.4% higher mean daily minimum temperatures than the long term mean.

Rainfall was also significantly higher (16.5%) than the long term mean.

Table D5: Climate Data (cont'd)

RECENT DATA (2009)

Month	Mean Daily Maximum Temp. (°C)	Mean Daily Minimum Temp. (°C)	Mean Monthly Rainfall (mm)
January	33.7	17.9	7.4
February	27.7	17.0	155.6
March	24.0	16.1	191.1
April	23.7	11.4	54.1
May	19.0	9.2	38.3
June	15.5	6.5	64.7
July	19.0	4.5	12.3
August	24.9	7.4	2.3
September	24.0	12.0	36.3
October	25.0	13.5	53.8
November	35.3	15.5	42.4
December	34.0	17.0	89.2
Annual	23.5	12.3	747.5
Variation to Long Term Average.	-6.7%	+16.4%	+16.5%

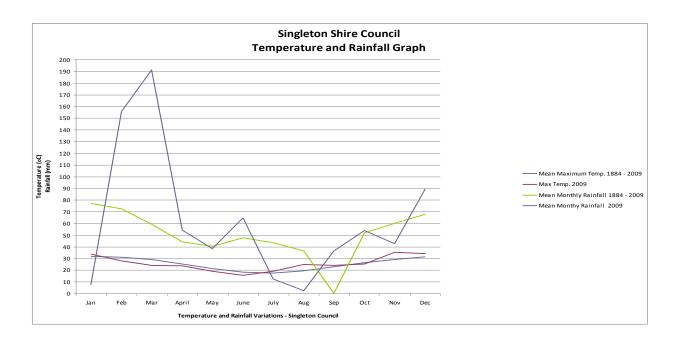


Figure D1: Monthly Temperature and Rainfall variations (showing changes to long-term averages from 1995)

3.3 MODEL RESULTS

Figure D2 below shows the observed potable water production for Singleton.

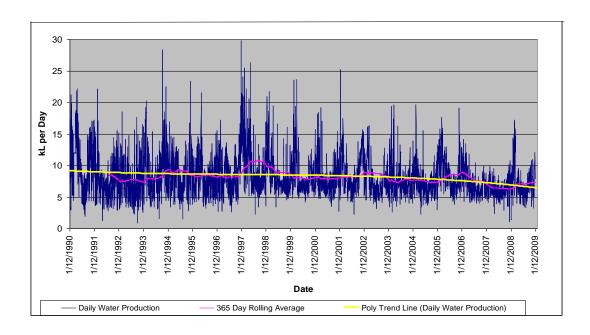


Figure D2: Total Annual Treated Water Production - Singleton

There is a distinct drop in water production from about 2002 to 2009, reflecting the demand management initiatives implemented (water restrictions, pricing increases and water conservation and education campaigns).

3.4 PEAK DAY TO AVERAGE DAY DEMAND RATIOS

The observed peak to average day demand ratio for Singleton is shown in Figure D3.

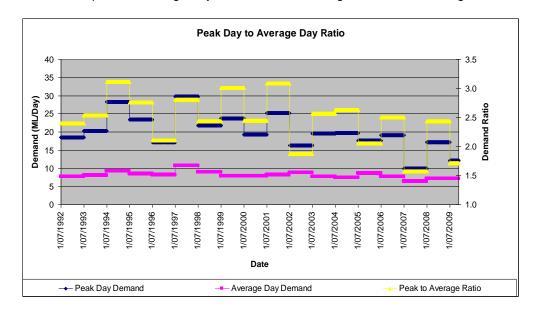


Figure D3: Peak day to Average Day Ratio

The observed peak day to average day demand ratio ranged from 1.6 to 3.1 for the period from 1 July 1992 to 30 June 2009, with an average value of 2.5.

The peak to average demand ratio for 2008/09 was 2.4.

4. WATER DEMAND AND WASTEWATER FLOW FORECASTS

4.1 INTRODUCTION

The purpose of forecasting future water demands and wastewater flows is to determine the future requirements of Singleton Council as a service provider and its ability to supply its customers in terms of both the source of water and the capability of the water supply and sewer infrastructure.

Water demand and wastewater flow forecasts for the next 30 years were estimated for several water management scenarios. The scenarios included the Traditional Scenario, which provides baseline data against which the impacts of different water demand management measures could be compared; and four integrated scenarios. An integrated scenario consists of one or more individual water demand management measures, including source substitution measure

The scenarios were assessed to:

- Estimate preliminary cost/benefit ratios for the water demand management measures that were included in the integrated scenarios; and
- Develop water demand and effluent generation forecasts for the next 30 years (2008/09 to 2038/2039) for each of the scenarios.

The Demand Side Management Decision Support System Software-Simplified (Version S1.1), supplemented with additional data, was used to assess the scenarios. The DWE (NSW Office of Water) model estimates costs/benefits for the water demand management measures that were included in the integrated scenarios, costs/benefits of each scenario and annual water demand and wastewater flow forecasts.

4.2 DATA

The following data were inputted to the model to calculate the Traditional Scenario:

- Demographics;
- Current water use;
- Evaporative cooling;
- · Assumed residential internal water use;
- Details of current infrastructure and planned upgrades; and
- Details of current water prices.

Data for 2007/08 and 2008/09 was used. The data used are summarised as follows:

4.2.1 DEMOGRAPHICS

The demographic data are shown in Table D6.

Element	
Current Year	2010
Current population served with water	17,919
People per residential assessment	3.1
Assumed change in people per residential assessment	-5.0%
Anticipated population growth	0.8% pa pop'n
	1.0% dwellings

Table D6: Demographic Data Used in Model

(Notes: The Model calculated the number of persons per residential assessment, based on Council's 2008/09 Performance Reports).

4.2.2: WATER USE DATA

The Model requires current water use data as well as segregation of water use into customer categories.

Element	
Current annual water supplied (treated water)	2,981 ⁽¹⁾
System Losses	8%
Peak to average day water demand ratio (2008/09)	2.4
Change in baseline per capita demand over next 30 years	0%
Total length of water mains in system	260km

Table D7: Water Use Data

Water use by customer category is presented in Table D8, based on 2002/03 to 2008/09 data as provided by Singleton Council.

The number of accounts is based on the 2008/09 Performance Report submitted by Council.

Customer Category	% of Total Water Consumed	Total number of accounts	Proportion of Customers Connected to Sewerage	Consumption per Account (L/d)
Residential	61.7%	5,839	98%	793
Commercial	17.7%	428	100%	3,105
Industrial	1.9%	1	100%	142,664
Public	7.0%	161	100%	3,265
Parks and Open				
Space	0%	0	20%	0
Rural	1.7%	92	0%	1,387
Other	10.0%	1	0%	750,861
Unmetered	0	0	0%	0
Total	100.0%			

Table D8: Water Used By Paying Customers & Other Users (2007/08)

[Assumptions: i) rural properties are not connected to sewer

- ii) no bulk water is supplied outside the municipality
- iii) "other" are losses, unaccounted for water and standpipe use.]

4.2.3: EVAPORATIVE COOLING

Council has advised that there are very few evaporative coolers in Singleton. An allowance of 1% of residential customers has been allowed for evaporative coolers.

4.2.4: RESIDENTIAL INTERNAL WATER USE

Residential Internal Water Use	
Assumed level of internal residential water use per person:	160
Calculated percentage of indoor residential use:	60%

Internal waster usage is typically between 160 and 190 L/day and the percentage indoor use would normally be between 50 and 70%. The percentage of indoor use is calculated by multiplying the internal residential water use per person by the number of persons per account and dividing by the total residential consumption per account.

4.2.5: OPERATIONS AND TREATMENT COSTS

The model uses current water supply and sewerage operating and treatment costs to determine cost benefits of implementing various demand management options.

The Singleton data is shown in Tables D9 below.

Current water pumping costs
Current annual water treatment costs
Current sewage pumping costs
Current annual sewage treatment costs

\$98,000 \$130,000 \$46,000 \$300,000

Table D9: Operating and Treatment Costs (2009)

(Note: 1. Water & sewer pumping costs are power costs only

2. Water & sewage treatment costs include chemicals, power, load based fees and Biosolids disposal)

4.2.6: FUTURE INFRASTRUCTURE WORKS

Potential and planned future **major** water and sewerage infrastructure projects (**as required by the Model**) are shown in Tables D10 and D11 below.

Туре	Element	Reason	Replace existing?	Current capacity	Augmented capacity	Cost
Headworks	Service Reservoirs	Peak	No	25ML	40ML	\$6,000,000
Bulk water transfer	Pump Stations & Mains	Peak	No	29ML/d	45ML/d	\$13,500,000
Water treatment	Water Treatment Plant	Peak	No	30ML/d	45ML/d	\$6,500,000

Table D10: Planned Future Major Water Infrastructure Projects

Туре	Element	Reason	Replace existing?	Current	Augmented	Cost
				capacity	capacity	
Sewage treatment	STP Augmentation	Peak	No	20,000 EP	40,000 EP	\$7,000,000
Sewage transfer	Pumping Stations & Transfer Mains	Peak	No	9ML/d	20ML/d	\$8,000,000

Table D11: Planned Future Major Wastewater Infrastructure Projects

Note: Current Plant Capacities: WFP: 30 ML/d; STP: 20,000 EP (5 -6 ML/d)

4.2.7: WATER PRICING

The water pricing data used in the Model is shown in Table D12 below:

Element	2009/10
Residential Filtered Water up to 450 kL/a	\$0.89/kL
> 450 kL/a	\$1.66/kL
Access Charge:	
Varies	
Base: 20 mm service	\$180.00

Table D12: Water Charges

It should be noted that these prices for consumption (at \$0.89/kL) are significantly lower than the State wide median (in 2007/08) of \$1.30/kL. This is the median for first tier charges and is based on a percentage of connected properties (that is, it is a weighted median)

4.3 UNDERLYING ASSUMPTIONS

The simplified version of the Model makes a number of assumptions regarding water use. These underlying assumptions are as outlined in the Model Instruction Manual (DEUS 2006) and are reproduced in Table D13 below.

[Note: The assumptions rely on a Domestic water use study undertaken in Perth in 1998 – 2001. An ABS study in 2004 reported the following per capita water consumption as:

Location	Percentage Use (NSW)
Bathroom	26.3%
Toilet	23.2%
Laundry	16.2%
Kitchen	10.0%
Outdoor	25.3%
Total	101%

(Source: Derived from Tables 9.6 & 9.7 in ABS 2004)

These percentage uses were largely confirmed in an IPART study carried out in 2004.

The results are not directly comparable with the Perth study because they include outdoor use – but in terms of in-house use, there is reasonable correlation.]

Type of Data	Derivation	Water Use Assumed
Internal residential consumption	Totals used are broadly based on the Perth Domestic Water Use Study (Water Corp., 2003). Adapted for increased levels of leakage and a lower market penetration of some fixtures and appliances.	Can be set by the user in the Setup Sheet. Typically from 170 to 190 L/d. 180 L/d is the recommended number for regional NSW.
Breakdown in Internal residential consumption	Breakdown used from the Perth study (Water Corp., 2003). Combined bath and shower use in the Perth study was assumed split 95% for showers, 5% for baths. Adjusted for change in the level of leakage outlined above.	Toilets 19.0% Baths 1.9% Showers 36.1% Taps/Sinks 11.4% Dishwashers 1.9% Washing Machine 24.7% Leakage 5.0%
Breakdown in internal use in commercial and public sectors	Breakdown used from the North American Commercial and Institutional End Uses Study (AWWARF, 2000)	Toilets 26.5 Urinals 6.6 Showers 4.0% Taps/Sinks 20.1% Dishwashers 3.8% Washing Machine 34.0% Internal Leakage 5.0%
Outdoor Use – Non-Residential Customer Categories	There is little data on levels of non-residential use in different climatic zones. In the absence of this information, assumptions are required that are reasonable. In this case, the approach has been to use some standard assumptions for some types of users and for others to provide a link to the level of residential use.	Outdoor use for non- residential customer categories is assumed to be: • 50% of the proportion of residential use for commercial and public users. • 90% for parks and open space uses. • 25% of the proportion of residential use for industrial users.

Table D13: Underlying Assumptions (Water Use) used in DEUS End Use Model

4.4 IWCM SCENARIOS

4.4.1: SCENARIOS

The Scenarios used in the model are presented in Table D14.

Management Measures	Scenario 1	Scenario 2	Scenario 3	Scenario 4
Community Education	Х	Х	Х	Х
Permanent (Low Level) Water Saving Measures				Х
Conservation Pricing for Residential Users			Х	Х
Non-Residential Water Audits			х	х
System Water Loss Management	Х	Х	Х	Х
Rainwater Tanks for all New Residential Development				Х
Dual Reticulation for all New Residential Development				х
BASIX - Fixture Efficiency with Rainwater Use			Х	Х
BASIX - Fixture Efficiency with Dual Reticulation			Х	Х
Evaporative Cooling Unit and Cooling Tower Audit		х	х	х

Table D14: IWCM Scenarios

The year 2010 was adopted as the starting year for estimating future water demands for each of the scenarios.

The rationale for adopting the integrated scenarios in the above table is as follows:

Scenario 1: Continuing community education, system water loss management

and on-going Government initiatives.

Scenario 2: Additional low cost management measure -conservation pricing.

Scenario 3: Includes water audits for non residential customers, fixture efficiency

with the use of rain water and dual reticulation.

Scenario 4: Includes rainwater tanks and dual reticulation for new developments.

Definitions of these demand management measures (Source: DEUS, Demand Side Management Decision Support System) are reproduced in Table D14 below:

Community Education (basic)	Council would provide materials, training and		
	technical assistance to implement a basic		
	ongoing community education program.		
Community Education (intensive)	Council would provide materials, training and		
	technical assistance to implement a		
	comprehensive ongoing community education		
	program.		
Residential Retrofit Program	During an audit or upon request, a Council		
	approved plumber would install a retrofit kit in		
	an existing residential premise. The kit could		
	contain a low flow shower head, tap flow		
	restrictors and a cistern weight for older style		
	toilets		
Notional Mandaton, Water Efficiency			
National Mandatory Water Efficiency	A mandatory water efficiency labelling		
Labelling Scheme	scheme (WELS) for toilets, washing		
(Already in place – therefore, not modelled)	machines, shower roses, taps, urinals and		
	dishwashers was introduced in 2005		
BASIX	The NSW Governments program to achieve a		
	20% reduction in water use in new residences		
Rainwater Tanks on all New Residential	Council would mandate the need for rainwater		
Development	tanks on all new development. For supply to		
	toilet flushing, washing machine use and		
	outdoor use		
Dual Reticulation for New Subdivisions	Council would require all new subdivisions to		
	be fitted with dual reticulation systems with		
	recycled water to be used for toilet flushing		
	and irrigation		
Permanent Restrictions on Water Use	Council would introduce a water waste		
	regulation to prohibit irrigation during times of		
	the day with highest evaporation; mandate the		
	use of trigger nozzles when washing cars;		
	prohibit the practice of hosing down hard		
	surfaces		
Conservation Pricing	Involves an inclining block tariff for single		
Jones Valion Friend	family, residential customers, with the price		
	per kL for the second tier charge at least 2		
	1 .		
	times base price. The first tier limit generally		
Active Leels Detection 9 Densis	based on internal use requirements only.		
Active Leak Detection & Repair	Introduce a more active detection and repair		
	program		
Non-residential Water Audits	Allows for water audits for non-residential		
	customers		
Grey Water Reuse	Residences would install grey water treatment		
	& recycling facilities for outdoor use		

Table D15: Descriptions of Water Demand Management Measures

[Refer also to Attachment B – for assumptions]

4.4.2: ASSESSMENT OF SCENARIOS

Estimates of preliminary costs/benefit ratios and water savings for individual water demand management measures and water demand and effluent regeneration forecasts for each of the scenarios are presented below.

	B/C Ratio		Average Annual
Management Measure	Utility	Total Community	Water Saving (ML/year)
Community Education	14.5	17.7	42.6
Permanent (Low Level) Water Saving Measures	69.4	69.4	93.0
Conservation Pricing for Residential Users	339.8	340.0	105.7
Non-Residential Water Audits	6.5	4.6	8.2
System Water Loss Management	0.1	0.1	11.8
Rainwater Tanks for all New Residential Development	1.2	0.0	88.0
Dual Reticulation for all New Residential Development	84.3	3.4	108.6
BASIX - Fixture Efficiency with Rainwater Use	7.1	0.9	124.9
BASIX - Fixture Efficiency with Dual Reticulation	79.5	4.1	145.5
Evaporative Cooling Unit and Cooling Tower Audit	0.2	0.2	3.2

Table D16: Water Savings and B/C ratios for Demand Management Measures

The data in the above table indicates that, based on an 0.8% growth rate, BASIX fixture efficiency with dual reticulation (that is a potable supply and a recycled water supply), BASIX fixture efficiency with rainwater use, conservation pricing for residential users and dual reticulation for all new residential developments, have the greatest benefits in terms of water savings. All the options (except audits of cooling units/cooling towers and non-residential water audits) are predicted to provide substantial water savings.

[Refer Attachments A & B for definitions of these demand management measures]

BASIX fixture efficiency with dual reticulation is shown to yield the highest annual water saving, but the highest **utility and community benefit to cost** ratio is for conservation pricing for residential customers. Permanent (low level) water saving measures for residential customers also demonstrates high B/C ratios.

4.4.3: FUTURE WATER DEMANDS

Total Water Demand Forecasts

The <u>average</u> (2010 to 2040) water demands and water savings for each of the IWCM scenarios are summarised in the table below:

IWCM Scenario	Total Water Used	Average Wate	er Saved
	(ML/Year)	(ML/Year)	%
Baseline	2981		
Scenario 1	2927	54	1.8
Scenario 2	2923	58	2.0
Scenario 3	2666	315	10.6
Scenario 4	2391	590	19.8

Table D17: Average Annual Water Demands and Assessed Water Savings

The results indicate that significant water savings can be realised by implementing water conservation and demand management initiatives.

Savings of up to 19.8 are achievable (according to the Model) depending on which of the scenarios is adopted. Clearly, Scenario 4 is predicted to yield the highest savings.

The modelled demand from 2010 to 2040 for the various scenarios is shown in Figure D4 below.

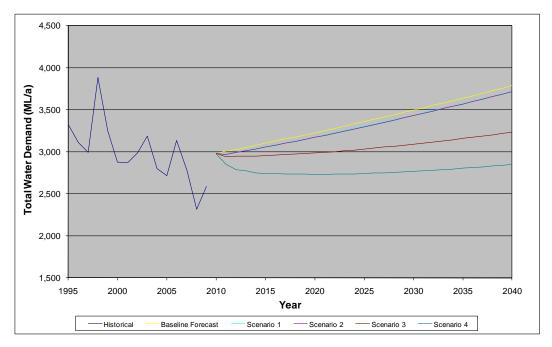


Figure D4: Total Water Demand Forecasts - 0.8% Growth

Peak Day Demand Forecasts

The Peak Daily Demand forecasts for the scenarios considered are shown in Figure D5.

The Peak Daily Demands are used to determine when the capacity of the Water Treatment Plant will be exceeded.

The results indicate that the Plant (capacity 30 ML/d) will have sufficient capacity beyond 2040, even under the "do nothing", Baseline scenario.

Implementation of the demand management measures listed in the four scenarios will extend the life of the Plant even further

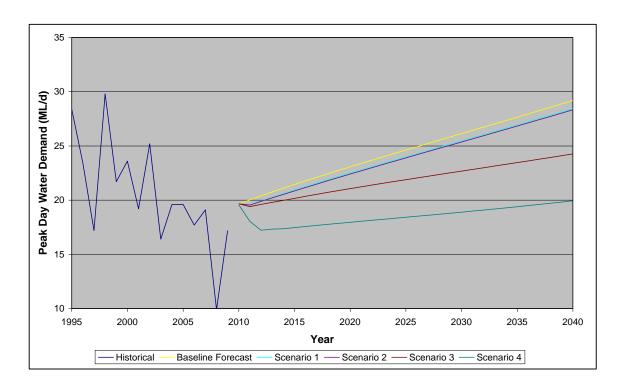


Figure D5: Peak Day Demand Forecasts - 0.8% Growth

Total Per Capita Water Demand

Figure D6 shows the impact of the various demand management scenarios on per capita water demand to 2040. There is a reduction in demand under all scenarios, relatively minor under Scenarios 1 and 2, but becomes particularly significant under Scenarios 3 and 4.

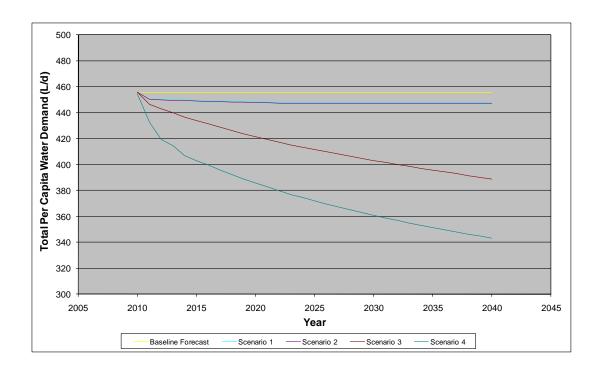


Figure D6: Total Per Capita Water Demand Forecast Scenarios - 0.8% Growth

Future Wastewater Flows

Wastewater Flows to the Sewage Treatment Plant have been modelled for the various scenarios considered.

Average daily flows are shown in Figure D7 and peak wet weather flows are shown in Figure D8.

The existing Sewage Treatment Plant has a nominal capacity of 20,000EP. This capacity has been re-assessed by Parsons Brinkerhoff at nearly 19,000EP. The demand management modelling confirms that the Plant is currently at or exceeding its capacity and that augmentation is now required.

Council has resolved to proceed with detailed design of plant modifications and extensions, to provide capacity for 27,500EP (which, based on the assessment by Parsons Brinkerhoff is expected to provide sufficient capacity until 2030).

Council has resolved to proceed with these works in 2010/11 and has engaged Parsons Brinkerhoff to complete detailed designs and to proceed to the calling of Tenders for the work.

Average Daily Wastewater Flow Forecasts

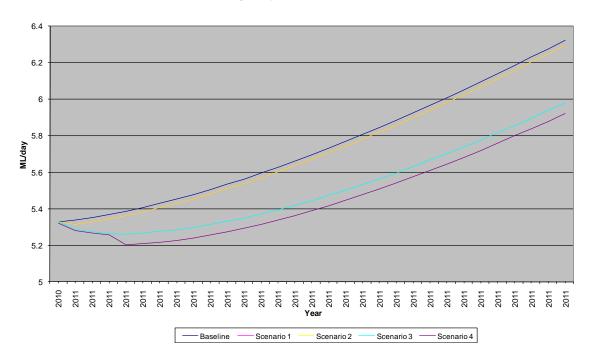


Figure D7: Wastewater Flows Scenarios - 0.8% Growth

Wet Weather Daily Wastewater Flow Forecasts

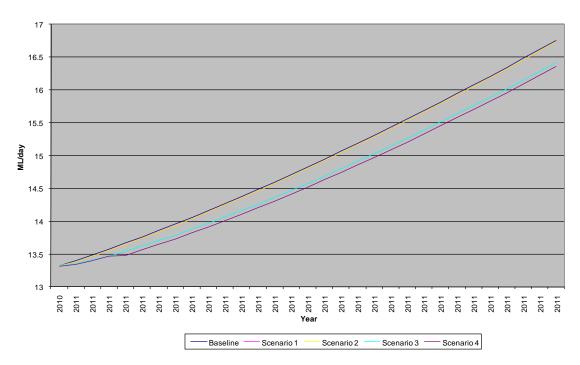


Figure D8: Wastewater Wet Weather Flows Scenarios - 0.8% Growth

5. CURRENT WATER CONSERVATION INITIATIVES

As generally discussed in Section C: "Water Conservation and Demand Management: General Concepts", Singleton Council has embraced water conservation and has developed a number of programs aimed at providing information to residents about ways of reducing their water consumption, as well as, in some cases, incentives to participate.

The information includes brochures and pamphlets and is made available to residents and businesses via widespread distribution of the material, advertisements and a number of Council websites.

These initiatives include:

Active membership and involvement in the Savewater program.

The Savewater Alliance is a not-for-profit association of water businesses, government agencies and product companies which aims to deliver water conservation programs throughout Australia. The organisation promotes water conservation behaviour change and water saving product purchasing.

Specifically, the Savewater program:

- Manages the savewater.com.au website
- Conducts major water conservation exhibitions
- Manages the annual Savewater awards
- Undertakes programs for businesses and schools
- Conducts ongoing competitions and prize giveaways, as well as quantitative market research.

Members, like Singleton Council, have their own dedicated website within the Savewater parent website where residents, businesses and schools can readily access information about the supply system, as well as, obtain valuable water conservation information, product details and take part in the ongoing rounds of competitions.

Water Loss Program

Singleton Council has developed its own (in house) water loss and detection program. The investigation is identifying the sources and magnitude of leaks and other water losses.

> Reuse Options

Council is currently investigating cost effective options for effluent reuse and/or stormwater harvesting, particularly in the watering of parks and reserves

> Brochures

Council has a series of Brochures available to the public, including:

- Water Quality providing general information about the water treatment processes and the quality provided to residents
- Your Water Meter providing information to residents about their water meter, how to read it and to how to use it to test for leaks
- Water Saving Tips
- Information about BASIX
- Production and distribution in October/November of each year of an information brochure which is delivered to every residence in Singleton, Broke and Jerrys Plains.

Advertising

As well as the advertising program conducted under the Savewater program, Council conducts its own annual advertising campaigns in local radio and print media.

There are regular media articles to alert the community about trends in consumption, particularly when usage exceeds targets.

> Flush Toilets

Council offers a rebate of \$120 to residents who purchase and install a dual flush toilet

Rainwater tank Rebates

In addition to the rebates provided by State and Commonwealth Government Departments, Singleton Council provides its own rebate for purchase and installation of rainwater tanks.

The rebates are:

Tank(s) Capacity	Rebate
2000-3999 litres	\$100
4000-8999 litres	\$250
9000 litres and above	\$450
	\$120 if all toilets are
	connected.
	\$50 if washing machine is
	connected

> Water Restrictions

During this drought Council has utilised its Drought Management Plan and has introduced water restrictions, as required.

• Level 3 Restrictions were imposed in 2008/09

Pricing Policy

As outlined in Section C6, demand management is essential for effective and efficient management. Council is increasing the water usage component of the bill and reading meters and billing three (3) times per year to encourage customers to exercise more control over

their water costs. (Larger customers' meters are read monthly, with bills also issued on a monthly basis)

Council is introducing a pricing regime over the next 2 years which will recover 75% of costs via **consumption charges**, which is a powerful demand management initiative.

Currently, 60% of revenue is derived from consumption charges.

6. SUMMARY AND CONCLUSIONS

Singleton Council provides water supply and sewerage services to a current population of 17,919 people. The Town is continuing to grow, with an annual increase in population of around 0.8%.pa

The main points arising from this Report are:

- Water consumption over the past 6 years has varied from a high of 2,798 ML/y in 2005/06 to a low of 1940 ML/y in 2007/08, with an average over that time of 2,369 ML/y.
- The average annual water production (water treated) since 1991/92, has been 2,981 ML;
- Unaccounted for water (UFW) since 2003/04 has averaged 8.0%. System losses in 2008/09 were approximately 6.7%. This is a reasonable water loss and reflects the good condition of the supply system. It would be reasonable to aim to reduce this water loss to less than 5% by the implementation of an effective water loss reduction program
- Residential water consumption is relatively high by national standards at 793 L/per residential property per day or 255 L/person/d (2007/08). Approximately 40% of this water is used outside the home (lawns, gardens, pools etc)
- The peak to average day usage ratio is 2.4 (2008/09), which is similar to similarly sized cities throughout NSW
- Council's water usage charges are based on an inclining block tariff, with the first 450 kL provided at \$0.89/kL. Thereafter, the charge is \$1.66/kL (2009/10 charges).
- These charges are low in comparison with other regional cities and towns in NSW. The State wide median consumption charge in 2007/08 was \$1.30/kL

Water demand and wastewater forecasts were modelled using the DWE (NSW Office of Water) Demand Side Management Decision Support System (Simplified Version S1.1). The modelling has indicated that:

- i) BASIX fixture efficiency with dual reticulation, BASIX fixture efficiency with rainwater use, conservation pricing for residential users and dual reticulation (that is a potable supply and a recycled water supply) for all new residential developments have the greatest benefits in terms of water savings.
 - BASIX fixture efficiency with dual reticulation is shown to yield the highest annual water saving, but the highest utility and community benefit to cost ratios are for conservation pricing for residential customers. Permanent (low level) water saving measures for residential customers also demonstrates high B/C ratios.
- ii) Full uptake of the demand management initiatives modelled may deliver significant water savings – up to 590 Ml/year (or a 19.8% reduction) for Scenario 4 initiatives, or 315 Ml/year (or a 10.6% reduction) for Scenario 3 initiatives.
- iii) The results indicate that the Water Treatment Plant will have sufficient capacity beyond 2040, even under the "do nothing" Baseline case.

iv) The Sewage Treatment Plant has effectively reached capacity. Council has resolved to augment the Plant's capacity in 2010/11 (from the existing nominal capacity of 20,000 EP to 27,500 EP) Implementation of Scenarios 3 or 4 demand management initiatives is expected to extend the life of the plant (in terms of capacity) beyond 2032/33.

Council has a commitment to water conservation in the Town and has implemented a range of initiatives which, based on the general reduction in water consumption since 2003/04, has been quite successful, particularly with a consistent growth in population.

These initiatives include most of the elements which the model predicts will deliver the greatest water savings, namely, BASIX requirements for all new homes, progressive implementation of conservation pricing and water restrictions, the latter probably being the most effective in recent years.

The modelling has indicated that the greatest cost benefit outcomes in the future will be derived from full implementation of residential conservation pricing and permanent (low level) water saving measures.

7. REFERENCES

- Australian Bureau of Statistics, Domestic Water Use, New South Wales, Catalogue 4616.1 2003
- Australian Bureau of Statistics, Water Account, Australia 2000 -01, Catalogue 4610.0
- Australian Bureau of Statistics, Household Water Use & Effects of the Drought, July 2005
- Australian Government, Water for the Future, Urban Water Use, 2003
- Birrell, Rapson and Smith for the Water Services Association of Australia, *Impact of Demographic Change and Urban Consolidation on Domestic Water Use*, 2005
- Bureau of Meteorology, Climate Statistics for Singleton. (www.bom.gov.au/climate/averages)
- Department of Energy, Utilities and Sustainability, Water Demand Tracking and Climate Correction, May 2002 (as revised in 2006)
- Department of Water and Energy, TBL Performance Reports, Water Supply & Sewerage 2007/08and 2008/09
- Department of Water and Energy, Demand Side Management Decision Support System (Simplified Version S1.1, July 2006)
- Economics@ANZ, Australia's Water Supply, Consumption and Regulation Water Use & Regulation 2007
- Institute for Sustainable Futures, University of Technology, Sydney, *Guide to Demand Management, undated*
- IPART, Residential Water Use in Sydney, the Blue Mountains & Illawarra, Research Paper No. 26, Sydney, 2004
- Loh, M & Coghlan, P; Domestic Water Use Study in Perth, Western Australia, 1998 2001, Water Corporation, Perth, 2003
- National Water Commission, Water Use in Australia 2008
- Parsons Brinckerhoff, Singleton STP Upgrade Capacity Assessment and Concept Design Report, December 2009
- Singleton Council, Management Plans 2008/09 & 2009/10
- Singleton Council, Water & Sewerage Budgets, 2009/10
- Singleton Council, Annual Report 2008/09
- Water Services Association of Australia, Water Wise Management: A Demand Management Manual, 1998

Singleton Counci	I: IWCM Evaluation Study: Appendix D
	ATTACHMENTS
	ATTAGRIMENTO

Singleton Council: IWCM Evaluation Study: Appendix D												
ATTACHMENT A: DEFINITIONS												

DEFINITIONS

(Source: Department of Water and Energy, *Demand Side Management Decision Support System* (Simplified Version S1.1, July 2006))

Benefit cost Ratio is the ratio of total benefits and costs arising from a demand management effort. Benefits include reductions in treatment and transfer costs and windfalls from the delay and downsizing of capital works projects (lower demands means smaller infrastructure). Costs include the cost of implementation incurred by the water utility for planning, administration and education campaigns and additional investment required by the utility and customers for water efficient fixtures and appliances, water loss management and recycled water and rainwater harvesting infrastructure.

End Use Model is the term that describes a model that looks to take account of the impact of different water conservation and source substitution on the volume of water used in different end uses and then aggregates these savings into an estimate of the total potential water to be saved.

End use refers to a specific use of water that can be identified within a specific customer category. Toilet use in residential accounts is one example of an end use, cooling system use in commercial would be another.

External Use refers to water used externally in irrigation and cooling towers.

Internal Use refers to water used internally in buildings and would also encompass any other water consumption that is not influenced by climate. This demand is assumed to remain unchanged by seasonal effects during the year.

A Measure is a single water conservation or source substitution initiative. For example, a residential retrofit program would be considered a single measure as would a code requiring water efficient fixtures for all new development.

Per Capita Demand is the water demand per capita of the resident population served with water.

A Scenario is a group or bundle of individual conservation or source substitution measures.

System Loss or Leakage refers to water that escapes from the reticulation system.

Total Community Benefit Cost Ratio is the ratio of the combined benefits and costs of the utility and customers. This total community perspective provides an overall assessment of cost-effectiveness given that savings costs and savings accrued by the utility are ultimately passed onto consumers through rates and charges.

Unaccounted for Water refers to the difference between metered water consumption and production. Strictly speaking a system with no metering of consumption would have 100% unaccounted for water.

Utility Benefit Cost Ratio is the ratio of the benefits and costs from the perspective of the water utility. These benefits and costs do not include the costs to customers of additional investment in water efficient fixtures and appliances and source substitution, nor benefits arising to customers from hot water savings.

Water Consumption is assumed to refer to all water passing from reticulation mains into customer's service lines.

Water Supplied is assumed to refer to water passing through bulk meters and treatment facilities into the reticulation system.

Singleton Co	ouncil: IWCM	Evaluation Stu	dy: Appendix	D		
	MENT B:		PTIONS	USED IN	DEMAN	D

(Source: Department of Water and Energy, *Demand Side Management Decision Support System (Simplified Version S1.1, July 2006))*

Description	Assumed Market Penetration	Assumed potable water Savings	Assumed Implementation Costs
Residential Retrofit Program Upon request, a Council approved plumber would install a retrofit kit in existing family residential housing. The kit could contain a low-flow showerhead, tap flow restrictors, and a cistern weight for older style toilets. Leaking taps would be repaired.	15% of residential customers over a three year period.	For showerheads: Based on average use volumes for each type of shower 5% of participants in the program are free-riders. For taps: 20% reduction in Taps/Sink uses per account. For leakage: %5 reduction lasting for 5 years.	For showerheads: • \$100 cost to utility per showerhead retrofitted. For leakage: • \$5 cost to utility per account.
National Mandatory Water Efficiency Labelling Scheme 2005 saw the introduction of a mandatory Water Efficiency Labelling Scheme (WELS) for toilets, washing machines, shower roses, taps, urinals and dishwashers.	Assumed to impact on SFR and MFR customers only: Increase the uptake of efficient washing machines by 5% and low flow showerheads by 15%. No impact assumed on toilets because the level of participation in the existing voluntary scheme is high.	Based on average use reductions of: • 20% for taps; • 30% for dishwashers; • 30% for washing machines; and • 30% for efficient showerheads.	 Costs to utility - to enhance and promote scheme: Setup - \$3,000 plus 20 cents for each person in the supply area. Annual outlay - \$500 plus 5 cents for each person in the supply area.
Rainwater Tanks on all new Residential Development All new residential development would fit a rainwater tank. Rainwater to be supplied for toilet flushing, cold water to the washing machine and outdoor use.	 100% of new residential customers from 2006. 10 year pump life. 	60% reduction in targeted water uses under average conditions, zero under peak conditions.	 Cost of installation is \$2,500 per account (utility or household). \$30 per year per customer for operation.
Dual Reticulation for New Subdivisions All new subdivisions to be fitted with dual reticulation systems with recycled water to be used for toilet flushing and irrigation.	90% of all new residential developments (assume 10% are infill and therefore not suitable for supply with dual reticulation).	100% reduction in targeted end uses.	\$3,000 net per account for additional costs of dual reticulation.

Description	Assumed Market	Assumed potable water	Assumed Implementation
BASIX – Fixture Component The NSW Government's BASIX program will be implemented.	Penetration 90% of new residential accounts complying.	Savings 20% reduction in use in showers, taps and sinks and outdoor use. The DSS then has two options for meeting the BASIX requirements – dual reticulation on all new development or rainwater tanks on all new development (see above).	Costs Costs to utility: Setup - \$10,000 plus 20 cents for each person in the supply area. Annual administration/enforcement \$3,000 plus 5 cents for each person in the supply area. Cost to community (excluding rainwater tank and/or dual reticulation costs): \$10 additional for low flow showerhead. \$10 for tap flow regulators. \$100 for water efficient planting/landscaping.
Community Education Council would provide materials, training and technical assistance to implement a comprehensive ongoing community education program.	20% of all customers in each customer category influenced by the community education effort.	Water savings vary dependent on the customer category and end use.	Costs to utility: Setup - \$10,000 plus 20 cents for each person in the supply area. Annual administration, \$3,000 plus 5 cents for each person in the supply area.
Permanent Restriction on Water use Council would introduce a water waste regulation that would: • prohibit irrigation during the times of the day with the highest evaporation; • mandate the use of trigger nozzle when washing cars; and • prohibit irrigation that fell on hard surfaces or hosing down of footpaths or driveways.	50% of all customers would adhere to the regulation.	10% reduction in external use in participating customers.	Cost to utility: Setup - \$10,000 plus 20 cents for each person in the supply area. Annual administration/enforcement - \$2,000 plus 5 cents for each person in the supply area.

Description	Assumed Market Penetration	Assumed potable water Savings	Assumed Implementation Costs
Inclining Block Water Pricing Structure Council would introduce an inclining block tariff for single family residential customers. The increase would result in an effective 50% increase in price for residential external use and no change in price for internal use.	All customers would be affected.	Price elasticity for external use is – 0.2.	Costs to utility: • Setup only - \$5,000 plus 20 cents for each person in the supply area.
Active Leak Detection and Repair Instead of more passive approaches where leaks are fixed when reported, councils would take a more active role by actually searching for and repairing leaks in the supply system.	 Leakage assumed to be half of all NRW. One third of the system targeted each year for leak detection and repair. 	 Reduces leakage by 75% in targeted areas upon completion of work. Impact of leakage reduction effort will last 3 years. 	 Leak detection and repair assumed to be carried out over 10% of system each year. \$280/km detection cost. \$230/km repair cost.
Non Residential Water Audits This measure allows for water audits for non-residential customers.	10% of non residential customers participating.	 10% saving in non-leakage consumption per customer 75% reduction in customer leakage – but savings only last 2 years. 	Costs to utility: Setup - \$5,000 plus 20 cents for each person in the supply area. Annual administration/enforcement - \$1,000 plus 5 cents for each person in the supply area. \$300 cost to each customer for implementation of audit recommendations.
Evaporative Cooling Unit and Cooling Tower audit This measure allows for water audits for evaporative cooling units and cooling towers for both residential and non-residential customers.	4% of customers participating in any one year.	 20% reduction in cooling uses. Measure life of 5 years. 	Costs to utility: Setup - \$5,000 plus 20 cents for each person in the supply area. Annual administration/enforcement - \$1,000 plus 5 cents for each person in the supply area. Cost to each customer for implementation of audit recommendations: \$100 for residential \$300 for non-residential.

gleton C	ouncil: IWCM Evaluation Study: Appendix D
	ATTACHMENT C: End Use Model Tables

<u>Demand Management Least Cost Planning - Decision Support System</u>
<u>Baseline Forecasts</u>

Existing Demand Measures:

Community Education
Water Restrictions

Year	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
Resident Population Served with water						17,919	18,062	18,207	18,353	18,499	18,647	18,796	18,947	19,098	19,251	19,405	19,560	19,717
Persons per Residential Account						3.07	3.07	3.06	3.06	3.06	3.05	3.05	3.05	3.04	3.04	3.04	3.04	3.03
Annual Average Water Consumption (ML/year)																		
Historical	2,719	3,136	2,779	2,313	2,587	0												
Baseline Forecast						2981.0	3004.8	3028.9	3053.1	3077.5	3102.2	3127.0	3152.0	3177.2	3202.6	3228.3	3254.1	3280.1
Peak Day Demand (ML)																		
Historical	19.60	17.70	19.10	9.90	17.20	0.00												
Baseline Forecast						19.66	19.99	20.31	20.62	20.93	21.22	21.51	21.79	22.06	22.33	22.60	22.86	23.12
Per Capita Demand (L/person/day)																		
Baseline Forecast						455.47	455.47	455.47	455.47	455.47	455.47	455.47	455.47	455.47	455.47	455.47	455.47	455.47
Forecast Waste Water Flows (ML/day)																		
Daily Average						5.33	5.34	5.35	5.37	5.39	5.41	5.43	5.45	5.48	5.51	5.53	5.56	5.60
Design Wet Weather						13.32	13.40	13.49	13.58	13.67	13.76	13.86	13.96	14.06	14.16	14.27	14.38	14.49

a) Baseline (0.8% pa Growth)

2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040
20,034	20,194	20,356	20,518	20,683	20,848	21,015	21,183	21,352	21,523	21,695	21,869	22,044	22,220	22,398	22,577	22,758
3.03	3.02	3.02	3.02	3.01	3.01	3.01	3.00	3.00	3.00	3.00	2.99	2.99	2.99	2.98	2.98	2.98
3332.8	3359.5	3386.3	3413.4	3440.7	3468.3	3496.0	3524.0	3552.2	3580.6	3609.2	3638.1	3667.2	3696.5	3726.1	3755.9	3786.0
23.62	23.87	24.12	24.37	24.61	24.85	25.09	25.33	25.57	25.81	26.05	26.29	26.53	26.77	27.01	27.25	27.49
455.47	455.47	455.47	455.47	455.47	455.47	455.47	455.47	455.47	455.47	455.47	455.47	455.47	455.47	455.47	455.47	455.47
						Ţ	Ţ	,	,						·	
5.66	5.70	5.73	5.77	5.81	5.85	5.88	5.93	5.97	6.01	6.05	6.10	6.14	6.18	6.23	6.28	6.32
14.71	14.83	14.94	15.06	15.18	15.31	15.43	15.56	15.68	15.81	15.94	16.08	16.21	16.34	16.48	16.62	16.76

a) Baseline (cont'd) (0.8% pa Growth)

<u>Demand Management Least Cost Planning - Decision Support System</u>
<u>Scenario 1</u>

New Demand Measures:

Community Education System Water Loss Management

2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026
0.00	36.64	37.23	37.81	38.37	38.92	39.46	39.98	40.50	41.00	41.50	42.00	42.48	42.96	43.44	43.91	44.38
0.00	0.00	0.00	1.37	2.77	4.19	5.63	7.09	8.58	10.09	11.62	13.18	14.76	14.88	15.00	15.12	15.24
0.00	36.64	37.23	39.18	41.14	43.11	45.09	47.07	49.08	51.09	53.13	55.17	57.24	57.84	58.43	59.03	59.61
0.00	36.64	37.23	39.18	41.14	43.11	45.09	47.07	49.08	51.09	53.13	55.17	57.24	57.84	58.43	59.03	59.61
2981.0	3004.8	3028.9	3053.1	3077.5	3102.2	3127.0	3152.0	3177.2	3202.6	3228.3	3254.1	3280.1	3306.4	3332.8	3359.5	3386.3
2981.0	2968.2	2991.7	3013.9	3036.4	3059.1	3081.9	3104.9	3128.1	3151.5	3175.1	3198.9	3222.9	3248.5	3274.4	3300.4	3326.7
0.0	36.6	37.2	39.2	41.1	43.1	45.1	47.1	49.1	51.1	53.1	55.2	57.2	57.8	58.4	59.0	59.6
19.66	19.99	20.31	20.62	20.93	21.22	21.51	21.79	22.06	22.33	22.60	22.86	23.12	23.37	23.62	23.87	24.12
19.66	19.50	19.81	20.11	20.40	20.68	20.96	21.23	21.49	21.75	22.01	22.26	22.51	22.75	23.00	23.24	23.48
455.47	455.47	455.47	455.47	455.47	455.47	455.47	455.47	455.47	455.47	455.47	455.47	455.47	455.47	455.47	455.47	455.47
455.78	450.22	450.18	449.93	449.69	449.45	449.21	448.97	448.74	448.51	448.28	448.05	447.83	447.81	447.79	447.77	447.76
4.49	4.50	4.51	4.53	4.54	4.56	4.58	4.59	4.62	4.64	4.66	4.69	4.71	4.74	4.77	4.80	4.83
5.33	5.32	5.33	5.34	5.36	5.38	5.41	5.43	5.45	5.48	5.51	5.54	5.57	5.60	5.64	5.67	5.71
11.24	11.30	11.38	11.45	11.53	11.60	11.69	11.77	11.85	11.94	12.03	12.12	12.21	12.31	12.40	12.50	12.60
13.32	13.38	13.46	13.55	13.64	13.74	13.83	13.93	14.03	14.14	14.24	14.35	14.46	14.57	14.69	14.80	14.92
	2981.0 2981.0 0.00 19.66 19.66 455.47 455.78 4.49 5.33	0.00 36.64 0.00 0.00 0.00 36.64 0.00 36.64 2981.0 3004.8 2981.0 2968.2 0.0 36.6 19.66 19.99 19.66 19.50 455.47 455.47 455.78 450.22 4.49 4.50 5.33 5.32 11.24 11.30	0.00 36.64 37.23 0.00 0.00 0.00 0.00 36.64 37.23 0.00 36.64 37.23 2981.0 3004.8 3028.9 2981.0 2968.2 2991.7 0.0 36.6 37.2 19.66 19.99 20.31 19.66 19.50 19.81 455.47 455.47 455.47 455.78 450.22 450.18 4.49 4.50 4.51 5.33 5.32 5.33 11.24 11.30 11.38	0.00 36.64 37.23 37.81 0.00 0.00 0.00 1.37 0.00 36.64 37.23 39.18 0.00 36.64 37.23 39.18 0.00 36.64 37.23 39.18 2981.0 3004.8 3028.9 3053.1 2981.0 2968.2 2991.7 3013.9 0.0 36.6 37.2 39.2 19.66 19.99 20.31 20.62 19.66 19.50 19.81 20.11 455.47 455.47 455.47 455.47 455.78 450.22 450.18 449.93 4.49 4.50 4.51 4.53 5.33 5.32 5.33 5.34 11.24 11.30 11.38 11.45	0.00 36.64 37.23 37.81 38.37 0.00 0.00 0.00 1.37 2.77 0.00 36.64 37.23 39.18 41.14 0.00 36.64 37.23 39.18 41.14 2981.0 3004.8 3028.9 3053.1 3077.5 2981.0 2968.2 2991.7 3013.9 3036.4 0.0 36.6 37.2 39.2 41.1 19.66 19.99 20.31 20.62 20.93 19.66 19.50 19.81 20.11 20.40 455.47 455.47 455.47 455.47 455.47 455.78 450.22 450.18 449.93 449.69 4.49 4.50 4.51 4.53 4.54 5.33 5.32 5.33 5.34 5.36 11.24 11.30 11.38 11.45 11.53	0.00 36.64 37.23 37.81 38.37 38.92 0.00 0.00 0.00 1.37 2.77 4.19 0.00 36.64 37.23 39.18 41.14 43.11 0.00 36.64 37.23 39.18 41.14 43.11 2981.0 3004.8 3028.9 3053.1 3077.5 3102.2 2981.0 2968.2 2991.7 3013.9 3036.4 3059.1 0.0 36.6 37.2 39.2 41.1 43.1 19.66 19.99 20.31 20.62 20.93 21.22 19.66 19.50 19.81 20.11 20.40 20.68 455.47 455.47 455.47 455.47 455.47 455.47 455.78 450.22 450.18 449.93 449.69 449.45 4.49 4.50 4.51 4.53 4.54 4.56 5.33 5.32 5.33 5.34 5.36 5.38 11.24 11.30 11.38 11.45 11.53 11.60	0.00 36.64 37.23 37.81 38.37 38.92 39.46 0.00 0.00 0.00 1.37 2.77 4.19 5.63 0.00 36.64 37.23 39.18 41.14 43.11 45.09 0.00 36.64 37.23 39.18 41.14 43.11 45.09 2981.0 3004.8 3028.9 3053.1 3077.5 3102.2 3127.0 2981.0 2968.2 2991.7 3013.9 3036.4 3059.1 3081.9 0.0 36.6 37.2 39.2 41.1 43.1 45.1 19.66 19.99 20.31 20.62 20.93 21.22 21.51 19.66 19.50 19.81 20.11 20.40 20.68 20.96 455.47 455.47 455.47 455.47 455.47 455.47 455.47 455.78 450.22 450.18 449.93 449.69 449.45 449.21 4.49 4.50 4.51 4.53 4.54 4.66 4.58 5.33 5.32 5.33 5.34 5.36 5.38 5.41 11.24 11.30 11.38 11.45 11.53 11.60 11.69	0.00 36.64 37.23 37.81 38.37 38.92 39.46 39.98 0.00 0.00 0.00 1.37 2.77 4.19 5.63 7.09 0.00 36.64 37.23 39.18 41.14 43.11 45.09 47.07 0.00 36.64 37.23 39.18 41.14 43.11 45.09 47.07 0.00 36.64 37.23 39.18 41.14 43.11 45.09 47.07 0.00 36.64 37.23 39.18 41.14 43.11 45.09 47.07 0.00 36.64 37.23 39.18 30.00 30	0.00	0.00 36.64 37.23 37.81 38.37 38.92 39.46 39.98 40.50 41.00 0.00 0.00 0.00 1.37 2.77 4.19 5.63 7.09 8.58 10.09 0.00 36.64 37.23 39.18 41.14 43.11 45.09 47.07 49.08 51.09 0.00 36.64 37.23 39.18 41.14 43.11 45.09 47.07 49.08 51.09 2981.0 3004.8 3028.9 3053.1 3077.5 3102.2 3127.0 3152.0 3177.2 3202.6 2981.0 2968.2 2991.7 3013.9 3036.4 3059.1 3081.9 3104.9 3128.1 3151.5 0.0 36.6 37.2 39.2 41.1 43.1 45.1 47.1 49.1 51.1 19.66 19.99 20.31 20.62 20.93 21.22 21.51 21.79 22.06 22.33 19.66 19.50 19.81 20.11 20.40 20.68 20.96 21.23 21.49 21.75 455.47 455.47 455.47 455.47 455.47 455.47 455.47 455.47 455.47 455.47 455.47 455.47 455.47 455.47 455.78 450.22 450.18 449.93 449.69 449.45 449.21 448.97 448.74 448.51 4.49 4.50 4.51 4.53 4.54 4.56 4.58 4.59 4.62 4.64 5.33 5.32 5.33 5.34 5.36 5.38 5.41 5.43 5.45 5.45 11.24 11.30 11.38 11.45 11.53 11.60 11.69 11.77 11.85 11.94	0.00 36.64 37.23 37.81 38.37 38.92 39.46 39.98 40.50 41.00 41.50 0.00 0.00 0.00 1.37 2.77 4.19 5.63 7.09 8.58 10.09 11.62 0.00 36.64 37.23 39.18 41.14 43.11 45.09 47.07 49.08 51.09 53.13 0.00 36.64 37.23 39.18 41.14 43.11 45.09 47.07 49.08 51.09 53.13 0.00 36.64 37.23 39.18 41.14 43.11 45.09 47.07 49.08 51.09 53.13 0.00 36.64 37.23 39.18 41.14 43.11 45.09 47.07 49.08 51.09 53.13 0.00 36.64 37.23 39.18 41.14 43.11 45.09 47.07 49.08 51.09 53.13 0.00 36.6 37.2 39.2 41.1 43.1 45.1 47.1 49.1 51.1 53.1 0.0 36.6 37.2 39.2 41.1 43.1 45.1 47.1 49.1 51.1 53.1 19.66 19.99 20.31 20.62 20.93 21.22 21.51 21.79 22.06 22.33 22.60 19.66 19.50 19.81 20.11 20.40 20.68 20.96 21.23 21.49 21.75 22.01 455.47 455.47 455.47 455.47 455.47 455.47 455.47 455.47 455.47 455.47 455.47 455.47 455.47 455.47 455.47 455.47 448.91	0.00 36.64 37.23 37.81 38.37 38.92 39.46 39.98 40.50 41.00 41.50 42.00 0.00 0.00 0.00 1.37 2.77 4.19 5.63 7.09 8.58 10.09 11.62 13.18 0.00 36.64 37.23 39.18 41.14 43.11 45.09 47.07 49.08 51.09 53.13 55.17 0.00 36.64 37.23 39.18 41.14 43.11 45.09 47.07 49.08 51.09 53.13 55.17 0.00 36.64 37.23 39.18 41.14 43.11 45.09 47.07 49.08 51.09 53.13 55.17 0.00 36.64 37.23 39.18 41.14 43.11 45.09 47.07 49.08 51.09 53.13 55.17 0.00 36.64 37.23 39.18 41.14 43.11 45.09 47.07 49.08 51.09 53.13 55.17 0.00 36.64 37.23 39.18 41.14 43.11 45.09 47.07 49.08 51.09 53.13 55.17 0.00 36.6 37.2 39.2 41.1 43.1 45.1 47.0 3152.0 3177.2 3202.6 3228.3 3254.1 2981.0 2968.2 2991.7 3013.9 3036.4 3059.1 3081.9 3104.9 3128.1 3151.5 3175.1 3198.9 0.0 36.6 37.2 39.2 41.1 43.1 45.1 47.1 49.1 51.1 53.1 55.2 19.66 19.99 20.31 20.62 20.93 21.22 21.51 21.79 22.06 22.33 22.60 22.86 19.66 19.50 19.81 20.11 20.40 20.68 20.96 21.23 21.49 21.75 22.01 22.26 455.47 455.47 455.47 455.47 455.47 455.47 455.47 455.47 455.47 455.47 455.47 455.47 455.47 455.47 455.47 455.47 455.47 448.28 448.05 449.49 449.49 449.49 449.49 449.45 449.21 448.97 448.74 448.51 448.28 448.05 44.49 44.9 44.9 44.9 44.9 44.9 44.9 44	0.00	0.00	0.00 36.64 37.23 37.81 38.37 38.92 39.46 39.98 40.50 41.00 41.50 42.00 42.48 42.96 43.44 0.00 0.00 0.00 0.00 1.37 2.77 4.19 5.63 7.09 8.58 10.09 11.62 13.18 14.76 14.88 15.00 0.00 36.64 37.23 39.18 41.14 43.11 45.09 47.07 49.08 51.09 53.13 55.17 57.24 57.84 58.43 0.00 36.64 37.23 39.18 41.14 43.11 45.09 47.07 49.08 51.09 53.13 55.17 57.24 57.84 58.43 0.00 36.64 37.23 39.18 41.14 43.11 45.09 47.07 49.08 51.09 53.13 55.17 57.24 57.84 58.43 0.00 36.64 37.23 39.18 41.14 43.11 45.09 47.07 49.08 51.09 53.13 55.17 57.24 57.84 58.43 0.00 36.64 37.2 39.18 41.14 43.11 45.09 47.07 49.08 51.09 53.13 55.17 57.24 57.84 58.43 0.00 36.6 37.2 39.2 41.1 43.1 45.09 47.07 49.08 51.09 53.13 55.17 57.24 57.84 58.43 0.00 36.6 37.2 39.2 41.1 43.1 45.1 47.1 49.1 51.1 53.1 55.2 57.2 57.8 58.4 0.00 36.6 37.2 39.2 41.1 43.1 45.1 47.1 49.1 51.1 53.1 55.2 57.2 57.8 58.4 19.66 19.99 20.31 20.62 20.93 21.22 21.51 21.79 22.06 22.33 22.60 22.86 23.12 23.37 23.62 19.66 19.50 19.81 20.11 20.40 20.68 20.96 21.23 21.49 21.75 22.01 22.26 22.51 22.75 23.00 455.47 455.4	0.00 36.64 37.23 37.81 38.37 38.92 39.46 39.98 40.50 41.00 41.50 42.00 42.48 42.96 43.44 43.91 0.00 0.00 0.00 1.37 2.77 4.19 5.63 7.09 8.58 10.09 11.62 13.18 14.76 14.88 15.00 15.12 0.00 36.64 37.23 39.18 41.14 43.11 45.09 47.07 49.08 51.09 53.13 55.17 57.24 57.84 58.43 59.03 0.00 36.64 37.23 39.18 41.14 43.11 45.09 47.07 49.08 51.09 53.13 55.17 57.24 57.84 58.43 59.03 0.00 36.64 37.23 39.18 41.14 43.11 45.09 47.07 49.08 51.09 53.13 55.17 57.24 57.84 58.43 59.03 0.00 36.64 37.23 39.18 41.14 43.11 45.09 47.07 49.08 51.09 53.13 55.17 57.24 57.84 58.43 59.03 0.00 36.64 37.23 39.18 41.14 43.11 45.09 47.07 49.08 51.09 53.13 55.17 57.24 57.84 58.43 59.03 0.00 36.66 37.2 39.2 41.1 43.1 45.1 47.1 49.1 3151.5 3175.1 3199.9 3222.9 3248.5 3274.4 3300.4 0.0 36.6 37.2 39.2 41.1 43.1 45.1 47.1 49.1 51.1 53.1 55.2 57.2 57.8 58.4 59.0 19.66 19.99 20.31 20.62 20.93 21.22 21.51 21.79 22.06 22.33 22.60 22.86 23.12 23.37 23.62 23.87 19.66 19.50 19.81 20.11 20.40 20.68 20.96 21.23 21.49 21.75 22.01 22.26 22.51 22.75 23.00 23.24 455.47 447.77 448.0 448.51 448.28 448.05 447.83 447.81 447.79 447.77 44.90 447.77 448.90 449.45 449.45 449.45 449.45 449.47 448.51 448.28 448.05 447.83 447.81 447.79 447.77 44.90 448.90 44.90 4

b) Option 1 (0.8% pa Growth)

	2040	2039	2038	2037	2036	2035	2034	2033	2032	2031	2030	2029	2028	2027
EDU	50.74	50.29	49.83	49.38	48.93	48.48	48.03	47.58	47.12	46.67	46.22	45.76	45.30	44.84
LOS	17.04	16.90	16.77	16.63	16.50	16.37	16.24	16.11	15.98	15.86	15.73	15.61	15.48	15.36
Calc	67.78	67.19	66.60	66.02	65.43	64.85	64.27	63.69	63.11	62.53	61.95	61.37	60.78	60.20
BCF	67.78	67.19	66.60	66.02	65.43	64.85	64.27	63.69	63.11	62.53	61.95	61.37	60.78	60.20
BAS	3786.0	3755.9	3726.1	3696.5	3667.2	3638.1	3609.2	3580.6	3552.2	3524.0	3496.0	3468.3	3440.7	3413.4
BCF	3718.2	3688.7	3659.5	3630.5	3601.8	3573.3	3545.0	3516.9	3489.1	3461.4	3434.1	3406.9	3380.0	3353.2
BCI	67.8	67.2	66.6	66.0	65.4	64.9	64.3	63.7	63.1	62.5	61.9	61.4	60.8	60.2
BAS	27.49	27.25	27.01	26.77	26.53	26.29	26.05	25.81	25.57	25.33	25.09	24.85	24.61	24.37
BCF	26.75	26.52	26.28	26.05	25.82	25.59	25.36	25.12	24.89	24.66	24.42	24.19	23.95	23.72
BAS	455.47	455.47	455.47	455.47	455.47	455.47	455.47	455.47	455.47	455.47	455.47	455.47	455.47	455.47
SET	447.62	447.63	447.63	447.64	447.65	447.66	447.66	447.67	447.68	447.69	447.70	447.72	447.73	447.74
BAS	5.32	5.28	5.24	5.21	5.17	5.13	5.09	5.06	5.02	4.99	4.95	4.92	4.89	4.86
BCF	6.30	6.25	6.20	6.16	6.11	6.07	6.03	5.98	5.94	5.90	5.86	5.82	5.78	5.74
BAS	14.13	14.01	13.89	13.78	13.66	13.55	13.44	13.33	13.22	13.11	13.01	12.90	12.80	12.70
BCF	16.73	16.59	16.45	16.32	16.18	16.05	15.92	15.79	15.66	15.53	15.41	15.28	15.16	15.04

b) Option 1 (cont'd) (0.8% pa Growth)

Demand Management Least Cost Planning - Decision Support System

Scenario 2

Demand Measures:

Existing Community Education

System Water Loss Management

New Evaporative Cooling Unit and Cooling Tower Audit

I																				
Year	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029
Demand Measures Water Savings (ML/year)																				
Total Water Savings Scenario 1	0.0	36.6	37.2	39.2	41.1	43.1	45.1	47.1	49.1	51.1	53.1	55.2	57.2	57.8	58.4	59.0	59.6	60.2	60.8	61.4
Evaporative Cooling Unit and Cooling Tower Audit	0.00	0.58	1.18	1.80	2.43	3.08	3.13	3.18	3.22	3.27	3.31	3.36	3.40	3.44	3.48	3.52	3.56	3.60	3.64	3.68
Caculated Total Savings	0.00	37.22	38.41	40.98	43.57	46.19	48.21	50.25	52.30	54.36	56.44	58.53	60.64	61.28	61.92	62.55	63.18	63.80	64.42	65.04
Total Water Savings Scenario 2 (Modelled)	0.00	37.22	38.41	40.98	43.57	46.18	48.21	50.24	52.29	54.36	56.43	58.53	60.64	61.28	61.91	62.54	63.17	63.79	64.42	65.04
Annual Average Water Consumption (ML/year)																				
Baseline Forecast	2981.0	3004.8	3028.9	3053.1	3077.5	3102.2	3127.0	3152.0	3177.2	3202.6	3228.3	3254.1	3280.1	3306.4	3332.8	3359.5	3386.3	3413.4	3440.7	3468.3
Integrated Scenario 2	2981.0	2967.6	2990.5	3012.1	3034.0	3056.0	3078.8	3101.8	3124.9	3148.3	3171.8	3195.6	3219.5	3245.1	3270.9	3296.9	3323.2	3349.6	3376.3	3403.2
Total Water Savings	0.0	37.2	38.4	41.0	43.6	46.2	48.2	50.2	52.3	54.4	56.4	58.5	60.6	61.3	61.9	62.5	63.2	63.8	64.4	65.0
Peak Day Demand (ML)																				
Baseline Forecast	19.66	19.99	20.31	20.62	20.93	21.22	21.51	21.79	22.06	22.33	22.60	22.86	23.12	23.37	23.62	23.87	24.12	24.37	24.61	24.85
Integrated Scenario 2	19.66	19.49	19.79	20.08	20.36	20.63	20.90	21.17	21.44	21.69	21.95	22.20	22.45	22.69	22.94	23.18	23.42	23.66	23.89	24.13
Per Capita Demand (L/person/day)																				
Baseline Forecast	455.47	455.47	455.47	455.47	455.47	455.47	455.47	455.47	455.47	455.47	455.47	455.47	455.47	455.47	455.47	455.47	455.47	455.47	455.47	455.47
Integrated Scenario 2	455.78	450.13	450.00	449.66	449.33	449.00	448.75	448.51	448.28	448.04	447.81	447.58	447.35	447.33	447.31	447.29	447.28	447.26	447.25	447.23
Waste Water Flows (ML/day)																				
Daily Average Baseline	4.49	4.50	4.51	4.53	4.54	4.56	4.58	4.59	4.62	4.64	4.66	4.69	4.71	4.74	4.77	4.80	4.83	4.86	4.89	4.92
Integrated Scenario 2	5.33	5.32	5.33	5.34	5.36	5.38	5.41	5.43	5.45	5.48	5.51	5.54	5.57	5.60	5.64	5.67	5.71	5.74	5.78	5.82
Design Wet Weather Baseline	11.24	11.30	11.38	11.45	11.53	11.60	11.69	11.77	11.85	11.94	12.03	12.12	12.21	12.31	12.40	12.50	12.60	12.70	12.80	12.90
Integrated Scenario 2	13.32	13.38	13.46	13.55	13.64	13.74	13.83	13.93	14.03	14.14	14.24	14.35	14.46	14.57	14.69	14.80	14.92	15.04	15.16	15.28

c) Option 2 (0.8% pa Growth)

O	2040	2039	2038	2037	2036	2035	2034	2033	2032	2031	2030
BCP	67.8	67.2	66.6	66.0	65.4	64.9	64.3	63.7	63.1	62.5	61.9
<mark>7</mark> COO	4.07	4.04	4.00	3.97	3.93	3.90	3.86	3.82	3.79	3.75	3.71
5 Calc	71.85	71.23	70.60	69.98	69.36	68.75	68.13	67.51	66.90	66.28	65.66
4 BCP2	71.84	71.22	70.60	69.98	69.36	68.74	68.12	67.51	66.89	66.27	65.65
_	3786.0	3755.9	3726.1	3696.5	3667.2	3638.1	3609.2	3580.6	3552.2	3524.0	3496.0
_	3714.1	3684.7	3655.5	3626.6	3597.9	3569.4	3541.1	3513.1	3485.3	3457.7	3430.4
BCP2	71.8	71.2	70.6	70.0	69.4	68.7	68.1	67.5	66.9	66.3	65.7
-											
9 BAS	27.49	27.25	27.01	26.77	26.53	26.29	26.05	25.81	25.57	25.33	25.09
BCP2	26.68	26.45	26.22	25.98	25.75	25.52	25.29	25.06	24.83	24.59	24.36
7 BAS	455.47	455.47	455.47	455.47	455.47	455.47	455.47	455.47	455.47	455.47	455.47
3 SET	447.13	447.14	447.14	447.15	447.16	447.17	447.18	447.19	447.20	447.21	447.22
2 BAS	5.32	5.28	5.24	5.21	5.17	5.13	5.09	5.06	5.02	4.99	4.95
0 BCP2	6.30	6.25	6.20	6.16	6.11	6.07	6.03	5.98	5.94	5.90	5.86
3 BAS	14.13	14.01	13.89	13.78	13.66	13.55	13.44	13.33	13.22	13.11	13.01
3 BCP2	16.73	16.59	16.45	16.32	16.18	16.05	15.92	15.79	15.66	15.53	15.41

c) Option 2 (cont'd) (0.8% pa Growth)

<u>Demand Management Least Cost Planning - Decision Support System</u>
<u>Scenario 3</u>

Demand Measures:

Existing Community Education

System Water Loss Management

Evaporative Cooling Unit and Cooling Tower Audit

New Non-Residential Water Audits

BASIX - Fixture Efficiency with Rainwater Use BASIX - Fixture Efficeincy with Dual Reticulation

Year																			
rear	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028
Demand Measures Water Savings (ML/year)																			
5 , , ,																			$\overline{}$
Total Water Savings Scenario 2	0.0	37.2	38.4	41.0	43.6	46.2	48.2	50.2	52.3	54.4	56.4	58.5	60.6	61.3	61.9	62.5	63.2	63.8	64.4
Non-Residential Water Audits	0.0	3.0	6.1	8.3	10.5	9.5	8.6	8.6	8.6	8.6	8.6	8.6	8.6	8.7	8.7	8.7	8.7	8.7	8.7
BASIX - Fixture Efficiency with Rainwater Use	0.00	9.60	18.95	28.09	37.03	45.79	54.39	62.85	71.18	79.39	87.50	95.52	103.45	111.32	119.13	126.89	134.61	142.29	149.95
BASIX - Fixture Efficeincy with Dual Reticulation	0.00	10.76	21.32	31.70	41.92	51.98	61.91	71.71	81.40	90.99	100.50	109.92	119.28	128.59	137.84	147.05	156.23	165.39	174.53
Caculated Total Savings	0.00	60.60	84.77	109.03	132.97	153.49	173.12	193.42	213.50	233.37	253.06	272.61	292.02	309.84	327.54	345.15	362.68	380.14	397.56
Total Water Savings Scenario 3 (Modelled)	0.00	60.09	83.60	107.06	130.09	149.59	168.11	187.21	206.00	224.51	242.77	260.81	278.65	294.83	310.83	326.67	342.37	357.95	373.41
Annual Average Water Consumption (ML/year)																			
Baseline Forecast	2981.0	3004.8	3028.9	3053.1	3077.5	3102.2	3127.0	3152.0	3177.2	3202.6	3228.3	3254.1	3280.1	3306.4	3332.8	3359.5	3386.3	3413.4	3440.7
Integrated Scenario 3	2981.0	2944.8	2945.3	2946.1	2947.5	2952.6	2958.9	2964.8	2971.2	2978.1	2985.5	2993.3	3001.5	3011.5	3022.0	3032.8	3044.0	3055.5	3067.3
Total Water Savings	0.0	60.1	83.6	107.1	130.1	149.6	168.1	187.2	206.0	224.5	242.8	260.8	278.6	294.8	310.8	326.7	342.4	357.9	373.4
Peak Day Demand (ML)																			
Baseline Forecast	19.66	19.99	20.31	20.62	20.93	21.22	21.51	21.79	22.06	22.33	22.60	22.86	23.12	23.37	23.62	23.87	24.12	24.37	24.61
Integrated Scenario 3	19.66	19.37	19.55	19.72	19.88	20.05	20.22	20.38	20.53	20.68	20.83	20.97	21.11	21.24	21.38	21.51	21.64	21.77	21.89
Per Capita Demand (L/person/day)																			
Baseline Forecast	455.47	455.47	455.47	455.47	455.47	455.47	455.47	455.47	455.47	455.47	455.47	455.47	455.47	455.47	455.47	455.47	455.47	455.47	455.47
Integrated Scenario 3	455.78	446.67	443.20	439.80	436.51	433.80	431.28	428.71	426,23	423.83	421.50	419.25	417.06	415.14	413,27	411.46	409.70	407.99	406.32
Waste Water Flows (ML/day)																			
Daily Average	4.49	4.50	4.51	4.53	4.54	4.56	4.58	4.59	4.62	4.64	4.66	4.69	4.71	4.74	4.77	4.80	4.83	4.86	4.89
Integrated Scenario 3	5.33	5.29	5.27	5.26	5.26	5.27	5.28	5.29	5.30	5.31	5.33	5.35	5.37	5.39	5.42	5.44	5.47	5.50	5.53
Design Wet Weather Baseline	11.24	11.30	11.38	11.45	11.53	11.60	11.69	11.77	11.85	11.94	12.03	12.12	12.21	12.31	12.40	12.50	12.60	12.70	12.80
Integrated Scenario 3	13.32	13.35	13.41	13.47	13.54	13.62	13.70	13.79	13.88	13.97	14.06	14.16	14.26	14.36	14.47	14.58	14.69	14.80	14.91

d) Option 3 (0.8% pa Growth)

2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	
65.0	65.7	66.3	66.9	67.5	68.1	68.7	69.4	70.0	70.6	71.2	71.8	BCP2
8.7	8.7	8.7	8.7	8.7	8.7	8.7	8.7	8.7	8.7	8.7	8.7	AUDITp
157.58	165.20	172.81	180.41	188.02	195.63	203.25	210.88	218.53	226.20	233.89	241.61	BASIX-H
183.65	192.78	201.90	211.02	220.16	229.31	238.48	247.68	256.90	266.15	275.44	284.76	BASIX-H
414.94	432.30	449.65	467.00	484.36	501.74	519.15	536.59	554.08	571.62	589.23	606.89	calc
388.79	404.07	419.29	434.44	449.55	464.61	479.64	494.64	509.62	524.59	539.56	554.53	BCP3
3468.3	3496.0	3524.0	3552.2	3580.6	3609.2	3638.1	3667.2	3696.5	3726.1	3755.9	3786.0	BAS
3079.5	3091.9	3104.7	3117.7	3131.0	3144.6	3158.5	3172.6	3186.9	3201.5	3216.4	3231.4	BCP3
388.8	404.1	419.3	434.4	449.5	464.6	479.6	494.6	509.6	524.6	539.6	554.5	BCP3
24.85	25.09	25.33	25.57	25.81	26.05	26.29	26.53	26.77	27.01	27.25	27.49	BAS
22.02	22.14	22.27	22.39	22.51	22.63	22.75	22.87	23.00	23.12	23.24	23.36	BCP3
455.47	455.47	455.47	455.47	455.47	455.47	455.47	455.47	455.47	455.47	455.47	455.47	BAS
404.69	403.10	401.55	400.04	398.56	397.11	395.69	394.30	392.94	391.61	390.30	389.02	SET
4.92	4.95	4.99	5.02	5.06	5.09	5.13	5.17	5.21	5.24	5.28	5.32	BAS
5.56	5.60	5.63	5.67	5.70	5.74	5.78	5.82	5.86	5.90	5.94	5.98	BCP3
12.90	13.01	13.11	13.22	13.33	13.44	13.55	13.66	13.78	13.89	14.01	14.13	BAS
15.03	15.14	15.26	15.38	15.51	15.63	15.76	15.89	16.02	16.15	16.28	16.42	BCP3

d) Option 3 (cont'd) (0.8% pa Growth)

<u>Demand Management Least Cost Planning - Decision Support System</u> <u>Scenario 4</u>

Demand Measures:

Existing Community Education

System Water Loss Management

Evaporative Cooling Unit and Cooling Tower Audit

Non-Residential Water Audits

BASIX - Fixture Efficiency with Rainwater Use BASIX - Fixture Efficiency with Dual Reticulation

New Permanent Low Level Restrictions on Water Use

Conservation Pricing for Residential Users

Rainwater Tanks for all New Residential Development
Dual Reticulation for all New Residential Development

Year	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025
Demand Measures Water Savings (ML/year)																
Total Water Savings Scenario 3	0.0	60.1	83.6	107.1	130.1	149.6	168.1	187.2	206.0	224.5	242.8	260.8	278.6	294.8	310.8	326.7
Permanent Low Level Restrictions on Water Use	0.0	77.3	78.9	80.5	82.0	83.5	84.9	86.3	87.6	88.9	90.2	91.4	92.7	93.8	95.0	96.2
Conservation Pricing for Residential Users	8.2	8.3	75.8	77.2	99.4	100.7	102.0	103.3	104.6	105.8	107.0	108.3	109.4	110.6	111.8	113.0
Rainwater Tanks for all New Residential Development	0.0	5.4	10.9	16.5	22.0	27.7	33.3	39.0	44.8	50.6	56.4	62.3	68.2	74.2	80.2	86.3
Dual Reticulation for all New Residential Development	0.0	6.6	13.3	20.1	26.9	33.8	40.8	47.9	55.0	62.2	69.4	76.7	84.1	91.5	98.9	106.4
Caculated Total Savings	8.19	157.72	262.51	301.29	360.45	395.30	429.21	463.74	498.00	532.03	565.87	599.53	633.06	664.98	696.80	728.52
Total Water Savings Scenario 4 (Modelled)	8.19	152.10	242.69	276.74	329.49	358.65	386.56	414.76	442.37	469.44	496.01	522.11	547.79	571.58	594.99	618.03
Annual Average Water Consumption (ML/year)																
Baseline Forecast	2981.0	3004.8	3028.9	3053.1	3077.5	3102.2	3127.0	3152.0	3177.2	3202.6	3228.3	3254.1	3280.1	3306.4	3332.8	3359.5
Integrated Scenario 4	2972.8	2852.7	2786.2	2776.4	2748.1	2743.5	2740.4	2737.2	2734.8	2733.2	2732.2	2732.0	2732.3	2734.8	2737.8	2741.4
Total Water Savings	8.2	152.1	242.7	276.7	329.5	358.7	386.6	414.8	442.4	469.4	496.0	522.1	547.8	571.6	595.0	618.0
Peak Day Demand (ML)																
Baseline Forecast	19.66	19.99	20.31	20.62	20.93	21.22	21.51	21.79	22.06	22.33	22.60	22.86	23.12	23.37	23.62	23.87
Integrated Scenario 4	19.57	17.96	17.15	17.24	17.28	17.37	17.46	17.55	17.64	17.72	17.80	17.88	17.95	18.03	18.10	18.17
Per Capita Demand (L/person/day)																
Baseline Forecast	455.47	455.47	455.47	455.47	455.47	455.47	455.47	455.47	455.47	455.47	455.47	455.47	455.47	455.47	455.47	455.47
Integrated Scenario 4	454.53	432.71	419.26	414.47	406.98	403.09	399.44	395.81	392.32	388.97	385.75	382.65	379.66	376.99	374.41	371.93
Waste Water Flows (ML/day)																
Daily Average	4.49	4.50	4.51	4.53	4.54	4.56	4.58	4.59	4.62	4.64	4.66	4.69	4.71	4.74	4.77	4.80
Integrated Scenario 4	5.32	5.28	5.27	5.26	5.20	5.21	5.22	5.23	5.24	5.26	5.27	5.29	5.31	5.34	5.36	5.39
Design Wet Weather Baseline	11.24	11.30	11.38	11.45	11.53	11.60	11.69	11.77	11.85	11.94	12.03	12.12	12.21	12.31	12.40	12.50
Integrated Scenario 4	13.31	13.34	13.40	13.47	13.48	13.56	13.65	13.73	13.82	13.91	14.01	14.11	14.21	14.31	14.41	14.52

e)Option 4 (0.8% pa Growth)

															_
2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	4
															Ī
342.4	357.9	373.4	388.8	404.1	419.3	434.4	449.5	464.6	479.6	494.6	509.6	524.6	539.6	554.5	BCP4
97.3	98.4	99.5	100.6	101.7	102.8	103.9	104.9	106.0	107.0	108.1	109.1	110.1	111.2	112.2	PERM
114.1	115.3	116.4	117.6	118.7	119.9	121.0	122.1	123.3	124.4	125.6	126.7	127.8	129.0	130.1	PRI
92.4	98.5	104.7	110.9	117.2	123.5	129.9	136.3	142.7	149.2	155.8	162.4	169.0	175.7	182.5	RAIN
114.0	121.6	129.3	137.0	144.8	152.6	160.5	168.4	176.4	184.5	192.6	200.8	209.0	217.3	225.6	DUAL
760.18	791.78	823.36	854.92	886.48	918.06	949.66	981.31	1013.02	1044.78	1076.63	1108.55	1140.58	1172.70	1204.94	calc
640.73	663.12	685.22	707.06	728.64	749.99	771.12	792.06	812.81	833.39	853.81	874.09	894.23	914.25	934.15	BCP4
															Ī
3386.3	3413.4	3440.7	3468.3	3496.0	3524.0	3552.2	3580.6	3609.2	3638.1	3667.2	3696.5	3726.1	3755.9	3786.0	BAS
2745.6	2750.3	2755.5	2761.2	2767.4	2774.0	2781.0	2788.5	2796.4	2804.7	2813.4	2822.5	2831.9	2841.7	2851.8	BCP4
640.7	663.1	685.2	707.1	728.6	750.0	771.1	792.1	812.8	833.4	853.8	874.1	894.2	914.2	934.1	BCP4
															ſ
															Ī
24.12	24.37	24.61	24.85	25.09	25.33	25.57	25.81	26.05	26.29	26.53	26.77	27.01	27.25	27.49	BAS
18.24	18.32	18.39	18.46	18.53	18.60	18.67	18.75	18.82	18.89	18.97	19.04	19.12	19.20	19.27	BCP4
															Ĩ
															Ī
455.47	455.47	455.47	455.47	455.47	455.47	455.47	455.47	455.47	455.47	455.47	455.47	455.47	455.47	455.47	BAS
369.54	367.24	365.01	362.86	360.79	358.78	356.84	354.96	353.14	351.37	349.66	348.01	346.40	344.84	343.32	SET
															Ĩ
															Ī
4.83	4.86	4.89	4.92	4.95	4.99	5.02	5.06	5.09	5.13	5.17	5.21	5.24	5.28	5.32	BAS
5.42	5.45	5.48	5.51	5.54	5.57	5.61	5.65	5.68	5.72	5.76	5.80	5.84	5.88	5.92	BCP4
12.60	12.70	12.80	12.90	13.01	13.11	13.22	13.33	13.44	13.55	13.66	13.78	13.89	14.01	14.13	BAS
14.63	14.74	14.85	14.97	15.09	15.21	15.33	15.45	15.57	15.70	15.83	15.96	16.09	16.22	16.36	BCP4
															-

e) Option 4 (cont'd) (0.8% pa Growth)

Singleton Council: IWCM Evaluation Study: Appendix E
APPENDIX E
INFORMATION & DATA ASSESSMENT

Contents

1.	INF	FORMATION & DATA SOURCED	1
	a.	From Singleton Shire Council	1
	b.	From Other Sources	4
2.	DA	ATA GAPS	٥

Contents i of i

INFORMATION & DATA SOURCED

→ From Singleton Council

Data/Information	Detail	Assessment	Comments/Gaps
 NOW (DWE) Performance Reports 	TBL Water & Sewerage Performance Reports for:	\checkmark	-
	△ 2006/07		
	△ 2007/08		
	→ 2008/09 as submitted		
 State of the Environment Reports 	Reports for 2007/08 & 2008/09	\checkmark	-
Annual Reports	Council Reports for DLG - 2005/06, 06/07 & 07/08	\checkmark	-
 Asset Management Plans – Water & 	→ Waste Water Assets 2008/09	\checkmark	-
Sewerage	→ Water Assets 2008/09		
	 Singleton Asset renewal Plan, 2009 		
	→ Obanvale (WTP) Asset Management Plan, 2009		
	 Sewer Mains Asset Management Program, 		
	2007/08		
	 Singleton 2030; Water Infrastructure 		
	Requirements, 2004		
	Singleton 100 Year Asset Renewal Summary for		
	Water Supply & Sewerage Services, 2009		
 Community Consultation 	Community Survey Results, 2009		
 Drought Management 	Drought Management & Emergency Response Plan, 2008	\checkmark	
 Demand Management 	Long Term Demand Assessment, 2008/09		
Financial Information	 Financial Planning Report for Water Supply & 		
	Sewerage Services, 2005		
	Financial Statements, 2007/08 and 2008/09		

Data/Information	Detail		Assessment	Comments/Gaps
	_	Sewage Treatment Report for Developer Services		
		Plan, 2005		
	_	Water Treatment Report for Developer Services		
		Plan, 2005		
	_	Water & Sewerage Developer Charges		
		(calculations & Plans), 2003/04		
	_	Water & Sewerage Treatment Reports for		
		Developer Services Plan, 2005		
		Finmod modelling files, 2005		
		Pipes ++ network files, 2004		
		Supplementary Report to the Developer Services		
		Plan, 2005		
	_	Singleton Financial Plan for Water Supply &		
		Sewerage Services, 2005		
Sewerage Management	_	Onsite Sewage Management Strategy & Policy,		
		2002		
	_	Sewer Inflow Data, 1991 - 2009		
	_	Singleton Villages Sewerage Schemes: Strategy		
		Study, 2009		
	_	Singleton Sewer & Liquid Trade Waste Services		
		Policy		
	_	Singleton Liquid Trade Waste Policy (undated)		
	_	Singleton Sewage Treatment Plant upgrade:		
		Capacity Assessment & Concept Design Report,		
		2009, Parsons Brinckerhoff		
 Water Supply Services 		Water Production Records, 1991 – 2009		

Data/Information	Detail		Assessment	Comments/Gaps
		Bulga Water Strategy, 2009 (Work-in-progress		
		Papers)		
		Camberwell Water Strategy, 2009 (Work-in-		
		progress Papers)		
		Water Consumption by Category, 2005/06; 06/07;		
		07/08; 08/09		
	_	Water Production Records, 1991/2009		
Planning	_	Sedgefield Structure Plan (Res. development		
		area), 2009		
	_	Singleton DCP, 2009		
	_	Singleton Land Use Strategy, 2001 & 2008		
	_	Singleton Local Environment Plan, 1996		
	_	Plans of Service Areas (Broke, Jerrys Plains,		
		Mount Thorley, Northern Singleton & surrounds)		
	_	Singleton Zoning Maps, 2009		
	_	Population Projections, Newcastle & Hunter		
		Region, 2008/09		
Flooding & Stormwater	_	Singleton Floodplain Management Plan & DCP,		
		1998		
	_	Singleton Stormwater Management Plan, 2003		
Management	_	Singleton Management Plan, 2009 - 10		
	_	Singleton Strategic Business Plan for Water		
		Supply, 1998/99		
	_	Singleton Strategic Business Plan for Sewerage		
		Supply, 1998/99		

→ From Other Sources

Data/Information	Detail	Source	Assessment	Comments
i) Catchment Context				
Environmentally Sensitive	UPSS Environmentally Sensitive 20m Map	www.environment.nsw.gov.au/clm/up		
Zones – Singleton	for Singleton	ssenvsensitivezones		
 POEO Register 	Activities in Singleton licensed under the	DECCW		
	POEO Act			
Population Data	Demographic data Census Tables & Quick	Australian Bureau of Statistics		
	Stats 1996, 2001, 2006			
Population projections	NSW State & Regional Population	NSW Department of Planning		
	Projections, 2001 – 2051			
Weather Data	Weather Station Data for Singleton	BOM		-
Natural Resources Atlas	Australian Natural Resources	www.anra.gov.au/topics/water/overvie		-
		w/nsw/swma-murrumbidgee-river		
 Catchment Action Plans 	 Hunter Central Rivers CMA Action Plan, 2006 – 2015 	Hunter Central Rivers CMA		
	 Management Targets 	Hunter Central Rivers CMA		
	Vegetation	Hunter Central Rivers CMA		
	 Geology 	Hunter Central Rivers CMA		
	Flora / Fauna	Hunter Central Rivers CMA		
	 Integrated Catchment Management Plan, 2002 	Hunter Catchment Management Trust		
Climate Change	Climate Change in the Hunter – Central	CSIRO, 2007 for the NSW		
	Rivers Catchment	Government		
	 Climate Change Impacts in the Hunter 	R Jones & K Hennessy, CSIRO 2000		

Data/Information	Detail Valley	Source	Assessment	Comments
	 Future Climate & Runoff Projections for NSW & ACT 	DWE, 2008		
 Vegetation & Biodiversity 	Regional Environmental Management Strategy, Biodiversity	www.huntercouncils.com.au/		
	Native Vegetation Management, Hunter Region	Greening Australia Environment 2003		
Threatened Species	Singleton Council – Threatened Species	DECCW:		
		www.threatenedspecies.environment.		
		nsw.gov.au		
Geology	Hunter Geology	Upper Hunter River Rehabilitation		
		Initiative & Hunter - Central Rivers		
		CMA		
National Parks	National Parks in Hunter Region	DECCW		
		www.environment.nsw.gov.au		
ii) Water Resources Context				
Water Sharing Plans	 Water Sharing Plan for the Hunter 	`		
	Regulated River Water Source, 2004	Water)		
	■ Water Sharing Plan for the Hunter	NSW Legislation		
	Unregulated & Alluvial Water Sources, 2009			
 Water Sharing General 	 Water Sharing in the Hunter Regulated River, Progress Report, 2004 - 2008 	NSW Office of Water (formerly DWE)		
	 A Guide to the Water Sharing Plan 	DIPNR, 2004		
	 Water Sharing Plan in the Glennies Creek Water Source 	DNR, 2001		

Data/Information■ Water Planning	 Detail Critical Water Planning for the Hunter Valley – 2007 Glennies Creek Dam Facts & Figures Data Catchment Management Strategy Natural Resources Report 	Source NSW Office of Water State Water NSW Office of Water, 2010 Hunter Central Rivers CMA, 2004 Hunter Catchment Management	Assessment	Comments
Water Resources Availability	Water Resources Availability – Hunter River Regulated, Australian Natural Resources Atlas	Trust, 2003 www.anra.gov.au		
Water QualityWater Quality & River Flows	Hunter River Water Quality & River Flow Objectives - NSW Water Quality & River Flow Objectives			
 Nutrient Loads River Condition Assessment Environmental Water 	- Water Quality Monitoring Data Nutrient Loads & Transport - Hunter River Assessment of River Condition – Hunter River, Australian Natural Resources Atlas Environmental Water Requirements to Maintain Wetlands of National & International Importance, National River Health Program, 2001	Water Info., DWE www.anra.gov.au www.anra.gov.au Natural Heritage Trust		
Climate & Runoff Projections	Future projections to 2030 for NSW & ACT, 2008	NSW Office of Water		

Data/Information	Detail	Source	Assessment	Comments
Water Quality & Flow Data	Water information Data Base, 2003-2007	NSW Office of Water		
Valuations	NSW Reference Rates Manual Valuation of	NSW Ministry of Energy & Utilities		
	Water Supply, Sewerage & Stormwater	(now NSW Office of Water)		
	Assets, 2003			
Future Planning	Future Directions for Regional NSW, 2008	PIA NSW		
iii) Urban Context				
EPA Licences	Licence No. 3088	DECCW NSW		
	 POEA Licences 			
	- Singleton	DECCW NSW		
Resources	■ Land, Water, Climate, Population &	Hunter Valley Research Foundation,		
	Demography, Economy & Industries	2008/09		
 Water Sustainability 	Sustainable Urban Water Program	HCCREMS www.hecrems.com		
iv) General				
 Environmental Assessment 	Glennies Creek Open Cut Coal Mine	Integra Coal, 2007		

DATA GAPS

Section	Reference	Data Gap	Ranking (H, M or L)	Recommended Action
Appendix A	Page A38	Outdated Strategic Business Plan (1998)	Н	Council is currently updating the SBP. Completion & sign off by Council late 2010
Appendix A	Page A43	Quantified water losses	М	Investigation & report on locations & extent of water losses, leading to a planned rectification program
Appendix A	Page A44	Peak demands by user category	M	Investigate & develop a data base to capture information
Appendix A	Page A44	Water usage on public parks and open space areas	M	Investigate & report on strategy to reduce usage
Appendix A	Page A48	Assessment details of sewerage system infiltration	Н	Investigate and develop a rectification program of sewer replacement or relining
Appendix A	Page A50	Update of 2005 Trade Waste Policy in accordance with the revised Guidelines issued by the NSW Office of Water (2009)	L	To be completed in 2011/12
Appendix A	Page A51	Details of trade waste discharges to the sewerage system	М	Develop data base to capture information
Appendix A	Page A51	Update of the 2003 Stormwater Management Plan	М	To be completed in 2011/12 – not a LWU responsibility. Refer this matter to Council

Appendix A	Page A52	Floodplain Management Plan	М	To be completed in 2011/12 – not a LWU responsibility. Refer this matter to Council
Appendix A	Page A52	No Council endorsed Levels of Service for stormwater.	М	Refer to Council for attention
Appendix C	Page C12	Current updated Levels of Service for water supply and sewerage	М	As above, Council has committed to a review and update of the Strategic Business Plan in 2010
Appendix C	Page C25	Performance Report gaps relating to: Sewerage - Biosolids reuse - energy consumption per ML - renewable energy consumption - net greenhouse gas emissions - loan payments per property	M	Council has committed to report on these items for 2009/10
Appendix C	Page C27	Performance Report gaps relating to: Water Supply - energy consumption per ML - renewable energy consumption - net greenhouse gas emissions	M	Council has committed to report on these items for 2009/10

Singleton Council: IWCM Evaluation Study: Appendix F

APPENDIX F

IWCM & OTHER ISSUES

Contents

1.	GE	NERAL	1
	A.	IWCM Urban issues	1
	В.	Non-Urban Water Servicing Issues	_

Contents i of i

1. GENERAL

The key aspect of the IWCM process is to identify solutions to urban water servicing problems or Issues.

Issues are defined as any non-compliances with a utility's urban water service targets, both now and within the 30 year planning horizon.

During the processes of defining targets, assessing compliance and identifying issues, two categories of ISSUES typically arise – namely, <u>specific IWCM Issues</u> and also, <u>non-urban Water Service Issues</u>.

The IWCM is interested specifically in the IWCM Urban Issues.

Other, non-urban Issues need to be referred to the relevant authorities and agencies for their consideration.

For completeness, the non-urban Issues identified during the Singleton IWCM Evaluation Study are also listed here with the Department / Agency to which they should be referred.

A. IWCM URBAN ISSUES

Address the Issues Refer Minutes of PRG - Appendix G below 1. Section 2A – Catchment Perspective: Population Growth (Page A7) 2. Section 2A – Catchment Perspective: Geology & Soils (Page A9) 3. Section 2A – Catchment Perspective: Geology & Soils (Page A9) 3. Section 2A – Catchment Perspective: Geology & Soils (Page A9) 4. Section 2A – Catchment Perspective Land Use (Page A19) 5. Section 4A – Urban Water Systems: Sewerage to Villages (Page A39) 6. Section 4A – Urban Water Systems: Levels of Service (Page A39) & Section C12 7. Section 4A – Urban Water Systems: Land Uses (Page A43) Section 4A – Urban Water Systems: Levels of Service (Page A39) & Section C12 Non-compliances with Licences issued by DECCW under the Protection of the Environment Act,	Item	Reference	Issue Description	Will BaU	Comment
1. Section 2A – Catchment Perspective: Population Growth (Page A7) 2. Section 2A – Catchment Perspective: Geology & Soils (Page A9) 3. Section 2A – Catchment Perspective: Geology & Soils (Page A9) 3. Section 2A – Catchment Perspective: Geology & Soils (Page A9) 4. Section 2A – Catchment Perspective Land Use (Page A19) 5. Section 4A – Urban Water Systems: Sewerage to Villages (Page A33) 6. Section 4A – Urban Water Systems: Levels of Service (Page A39) & Section C12 7. Section 4A – Urban Water Systems: Land Uses (Page A43) 1 Increasing customer base resulting in increases in water consumption & N 1 Increasing customer base resulting in increases in water consumption & wastewater sail increases in water consumption & wastewater sail increases in water consumption & N 2 Potential for urban salinity with potential impacts on water & sewerage infrastructure. 9 Potential for groundwater recharge and/or pollution from septic tank systems and leaking wastewater lagoons. 4. Section 2A – Catchment Perspective Land Use (Page A19) 4. Section 4A – Urban Water Systems: Sewerage to Villages (Page A39) 5 Section 4A – Urban Water Systems: Levels of Service (Page A39) & Section C12 7 Section 4A – Urban Water Systems: Levels of Service (Page A39) & Section C12 Non-compliances with Licences issued by DECCW under the Protection of the Environment Act,				Address the	
1. Section 2A – Catchment Perspective: Population Growth (Page A7) 2. Section 2A – Catchment Perspective: Geology & Soils (Page A9) 3. Section 2A – Catchment Perspective: Geology & Soils (Page A9) 3. Section 2A – Catchment Perspective: Geology & Soils (Page A9) 4. Section 2A – Catchment Perspective Land Use (Page A19) 5. Section 4A – Urban Water Systems: Levels of Service (Page A39) & Section 4A – Urban Water Systems: Land Uses (Page A43) 6. Section 4A – Urban Water Systems: Land Uses (Page A43) 7. Section 4A – Urban Water Systems: Land Uses (Page A43) 8				Issues	
1. Section 2A – Catchment Perspective: Population Growth (Page A7) 2. Section 2A – Catchment Perspective: Geology & Soils (Page A9) 3. Section 2A – Catchment Perspective: Geology & Soils (Page A9) 3. Section 2A – Catchment Perspective: Geology & Soils (Page A9) 4. Section 2A – Catchment Perspective Land Use (Page A19) 5. Section 4A – Urban Water Systems: Levels of Service (Page A33) & Section C12 6. Section 4A – Urban Water Systems: Land Uses (Page A43) 7. Section 4A – Urban Water Systems: Land Uses (Page A43) Section 4A – Urban Water Systems: Land Uses (Page A43) Nincreasing customer base resulting in increases in water consumption & waster consumption & wastewater salinity with potential for urban salinity with potential impacts on water & sewerage infrastructure. Potential for urban salinity with potential impacts on water & sewerage infrastructure. Potential for urban Salinity with potential impacts on water & systems and leaking wastewater lagoons. High current & future water consumption by the mining industry, with potential demand impacts on the water resource Four Villages (Broke, Jerrys Plains, Bulga & Camberwell are not sewered. Relevance of current Levels of Service (framed in 1998). Non-compliances with Licences issued by DECCW under the Protection of the Environment Act,				Refer Minu	tes of PRG -
Perspective: Population Growth (Page A7) increases in water consumption & wastewater generation over the next 30 years. 2. Section 2A – Catchment Perspective: Geology & Soils (Page A9) 3. Section 2A – Catchment Perspective: Geology & Soils (Page A9) 4. Section 2A – Catchment Perspective Land Use (Page A19) 4. Section 4A – Urban Water Systems: Sewerage to Villages (Page A33) 6. Section 4A – Urban Water Systems: Levels of Service (Page A39) & Section C12 7. Section 4A – Urban Water Systems: Land Uses (Page A43) Non-compliances with Licences issued by DECCW under the Protection of the Environment Act,				Appendi	x G below
(Page A7) wastewater generation over the next 30 years. 2. Section 2A – Catchment Perspective: Geology & Soils (Page A9) 3. Section 2A – Catchment Perspective: Geology & Soils (Page A9) 4. Section 2A – Catchment Perspective Land Use (Page A19) 4. Section 2A – Catchment Perspective Land Use (Page A19) 5. Section 4A – Urban Water Systems: Sewerage to Villages (Page A39) 6. Section 4A – Urban Water Systems: Levels of Service (Page A39) & Section C12 7. Section 4A – Urban Water Systems: Land Uses (Page A43) Four Villages (Wastewater Levels of Service (Page A39) & Section C12 Non-compliances with Licences issued by DECCW under the Protection of the Environment Act,	1.	Section 2A – Catchment	Increasing customer base resulting in	N	
2. Section 2A – Catchment Perspective: Geology & Soils (Page A9) 3. Section 2A – Catchment Perspective: Geology & Soils (Page A9) 3. Section 2A – Catchment Perspective: Geology & Soils (Page A9) 4. Section 2A – Catchment Perspective Land Use (Page A19) 5. Section 4A – Urban Water Systems: Sewerage to Villages (Page A33) 6. Section 4A – Urban Water Systems: Levels of Service (Page A39) & Section C12 7. Section 4A – Urban Water Systems: Land Uses (Page A43) Non-compliances with Licences issued by DECCW under the Protection of the Environment Act,		Perspective: Population Growth	increases in water consumption &		
2. Section 2A – Catchment Perspective: Geology & Soils (Page A9) 3. Section 2A – Catchment Perspective: Geology & Soils (Page A9) 3. Section 2A – Catchment Perspective: Geology & Soils (Page A9) 4. Section 2A – Catchment Perspective Land Use (Page A19) 5. Section 4A – Urban Water Systems: Sewerage to Villages (Page A33) 6. Section 4A – Urban Water Systems: Levels of Service (Page A39) & Section C12 7. Section 4A – Urban Water Systems: Land Uses (Page A43) N Potential for urban salinity with potential impacts on water & sewerage infrastructure. Potential for urban salinity with potential impacts on water & sewerage infrastructure. Y and/or pollution from septic tank systems and leaking wastewater lagoons. High current & future water consumption by the mining industry, with potential demand impacts on the water resource Four Villages (Broke, Jerrys Plains, Bulga & Camberwell are not sewered. Relevance of current Levels of Service (framed in 1998). N Section 4A – Urban Water Systems: Land Uses (Page A43) Non-compliances with Licences issued by DECCW under the Protection of the Environment Act,		(Page A7)	wastewater generation over the next		
Perspective: Geology & Soils (Page A9) 3. Section 2A – Catchment Perspective: Geology & Soils (Page A9) 4. Section 2A – Catchment Perspective Land Use (Page A19) 5. Section 4A – Urban Water Systems: Sewerage to Villages (Page A33) 6. Section 4A – Urban Water Systems: Levels of Service (Page A39) & Section C12 7. Section 4A – Urban Water Systems: Land Uses (Page A43) Perspective: Geology & Soils (Page A43) Potential impacts on water & sewerage to for groundwater recharge and/or pollution from septic tank systems and leaking wastewater lagoons. High current & future water consumption by the mining industry, with potential demand impacts on the water resource Four Villages (Broke, Jerrys Plains, Bulga & Camberwell are not sewered. Relevance of current Levels of Service (framed in 1998). Non-compliances with Licences issued by DECCW under the Protection of the Environment Act,			30 years.		
A9) Section 2A – Catchment Perspective: Geology & Soils (Page A9) 4. Section 2A – Catchment Perspective Land Use (Page A19) Section 4A – Urban Water Systems: Levels of Service (Page A39) & Section C12 7. Section 4A – Urban Water Systems: Land Uses (Page A43) Section 4A – Urban Water Systems: Land Uses (Page A43) Section 4A – Urban Water Systems: Land Uses (Page A43) Section 4A – Urban Water Systems: Levels of Service (Page A39) & Section C12 Non-compliances with Licences issued by DECCW under the Protection of the Environment Act,	2.	Section 2A – Catchment	Potential for urban salinity with	N	
3. Section 2A – Catchment Perspective: Geology & Soils (Page A9) 4. Section 2A – Catchment Perspective Land Use (Page A19) 5. Section 4A – Urban Water Systems: Sewerage to Villages (Page A33) 6. Section 4A – Urban Water Systems: Levels of Service (Page A39) & Section C12 7. Section 4A – Urban Water Systems: Land Uses (Page A43) 8. Section 4A – Urban Water Systems: Levels of Service (Page A39) & Section C12 7. Section 4A – Urban Water Systems: Land Uses (Page A43) 8. Section 4A – Urban Water Systems: Levels of Service (Page A39) & Section C12 7. Section 4A – Urban Water Systems: Land Uses (Page A43) 8. Section 4A – Urban Water Systems: Levels of Service (Page A39) & Section C12 8. Section 4A – Urban Water Systems: Land Uses (Page A43) 8. Section 4A – Urban Water Systems: Land Uses (Page A43)		Perspective: Geology & Soils (Page	potential impacts on water &		
Perspective: Geology & Soils (Page A9) and/or pollution from septic tank systems and leaking wastewater lagoons. 4. Section 2A – Catchment Perspective Land Use (Page A19) Section 4A – Urban Water Systems: Sewerage to Villages (Page A33) 6. Section 4A – Urban Water Systems: Levels of Service (Page A39) & Section C12 7. Section 4A – Urban Water Systems: Land Uses (Page A43) Non-compliances with Licences issued by DECCW under the Protection of the Environment Act,		A9)	sewerage infrastructure.		
A9) Section 2A – Catchment Perspective Land Use (Page A19) Section 4A – Urban Water Systems: Sewerage to Villages (Page A33) Section 4A – Urban Water Systems: Levels of Service (Page A39) & Section C12 Section 4A – Urban Water Systems: Levels of Service (Page A39) & Section C12 Negrous Page A43) Section 4A – Urban Water Systems: Levels of Service (Page A39) & Section C12 Negrous Page A43) Section 4A – Urban Water Systems: Levels of Service (Page A39) & Section C12 Non-compliances with Licences issued by DECCW under the Protection of the Environment Act,	3.	Section 2A – Catchment	Potential for groundwater recharge	Y	
lagoons.		Perspective: Geology & Soils (Page	and/or pollution from septic tank		
4. Section 2A – Catchment Perspective Land Use (Page A19) High current & future water consumption by the mining industry, with potential demand impacts on the water resource 5. Section 4A – Urban Water Systems: Sewerage to Villages (Page A33) 6. Section 4A – Urban Water Systems: Levels of Service (Page A39) & Section C12 7. Section 4A – Urban Water Systems: Land Uses (Page A43) Non-compliances with Licences issued by DECCW under the Protection of the Environment Act,		A9)	systems and leaking wastewater		
Perspective Land Use (Page A19) Perspective Land Use (Page A19) Section 4A – Urban Water Systems: Sewerage to Villages (Page A33) Section 4A – Urban Water Systems: Levels of Systems: Levels of Systems: Levels of Systems: Levels of Service (Page A39) & Section C12 Section 4A – Urban Water Systems: Levels of Service (Page A39) & Section C12 Section 4A – Urban Water Systems: Land Uses (Page A43) Non-compliances with Licences issued by DECCW under the Protection of the Environment Act,			lagoons.		
consumption by the mining industry, with potential demand impacts on the water resource 5. Section 4A – Urban Water Systems: Sewerage to Villages (Page A33) 6. Section 4A – Urban Water Systems: Levels of Service (Page A39) & Section C12 7. Section 4A – Urban Water Systems: Land Uses (Page A43) Non-compliances with Licences issued by DECCW under the Protection of the Environment Act,	4.		High current & future water	-	
Section 4A – Urban Water Systems: Sewerage to Villages (Page A33) 6. Section 4A – Urban Water Systems: Levels of Service (Page A39) & Section C12 7. Section 4A – Urban Water Systems: Land Uses (Page A43) Four Villages (Broke, Jerrys Plains, Bulga & Camberwell are not sewered. Relevance of current Levels of Service (framed in 1998). N N N N N N N N N N N Protection of the Environment Act,		Perspective Land Use (Page A19)	consumption by the mining industry,		
5. Section 4A – Urban Water Systems: Sewerage to Villages (Page A33) 6. Section 4A – Urban Water Systems: Levels of Service (Page A39) & Section C12 7. Section 4A – Urban Water Systems: Land Uses (Page A43) Four Villages (Broke, Jerrys Plains, Bulga & Camberwell are not sewered. Relevance of current Levels of Service (framed in 1998). Non-compliances with Licences issued by DECCW under the Protection of the Environment Act,			with potential demand impacts on the		
Systems: Sewerage to Villages (Page A33) Bulga & Camberwell are not sewered. 6. Section 4A – Urban Water Systems: Levels of Service (Page A39) & Section C12 7. Section 4A – Urban Water Systems: Land Uses (Page A43) Non-compliances with Licences issued by DECCW under the Protection of the Environment Act,			water resource		
(Page A33) Bulga & Camberwell are not sewered. 6. Section 4A – Urban Water Systems: Levels of Service (Page A39) & Section C12 7. Section 4A – Urban Water Systems: Land Uses (Page A43) Non-compliances with Licences issued by DECCW under the Protection of the Environment Act,	5.		Four Villages (Broke, Jerrys Plains,	N	
sewered. 6. Section 4A – Urban Water Systems: Levels of Service (Page A39) & Section C12 7. Section 4A – Urban Water Systems: Land Uses (Page A43) Non-compliances with Licences issued by DECCW under the Protection of the Environment Act,			Bulga & Camberwell are not		
Systems: Levels of Service (Page A39) & Section C12 7. Section 4A – Urban Water Systems: Land Uses (Page A43) Non-compliances with Licences issued by DECCW under the Protection of the Environment Act,		, ,	sewered.		
A39) & Section C12 7. Section 4A – Urban Water Systems: Land Uses (Page A43) Non-compliances with Licences issued by DECCW under the Protection of the Environment Act,	6.		Relevance of current Levels of	N	
7. Section 4A – Urban Water Systems: Land Uses (Page A43) Non-compliances with Licences issued by DECCW under the Protection of the Environment Act,			Service (framed in 1998).		
Systems: Land Uses (Page A43) issued by DECCW under the Protection of the Environment Act,	7.	Section 4A – Urban Water	Non-compliances with Licences	-	
Protection of the Environment Act,		Systems: Land Uses (Page A43)	•		
			-		
			1997. [Refer Appendix C: IWCM		

Item	Reference	Issue Description	Will BaU Address the Issues	Comment
			Refer Min	utes of PRG -
			Append	lix G below
		Related Targets, Obligations,		
		Responsibilities & Requirements.		
8.	Section 4A – Urban Water Systems: Effluent Quality (Page	Non-compliances with DECCW	Y	
	A51)	(EPA) STP Licence. [Refer		
	,	Attachment E]		
9.	Section 4A – Urban Water	Current Trade Waste Policy not in	N	
	Systems: Trade Waste Policy	accordance with revised (2009)		
	(Page A51)	Guidelines		
10.	Section 4A – Urban Water Systems: Sewerage Asset Condition (Page A52)	Condition of sewerage infrastructure.	Y	
11.	Section 5A – Climate Change Aspects: (Page A55)	Council endorsed strategy for managing potential climate change impacts.	N	
12.	Section 5A – Climate Change Aspects: (Page A55)	Assessment of "secure yield" of existing water source (Glennies Creek dam).	N	
13.	Section C: IWCM Related Targets,	Non-compliance with total coliforms	Y	
	Obligations, Responsibilities & Requirements: Water Quality	and fluoride concentrations in the		
	(Page C2)	Singleton water supply.		
14.	Section C: IWCM Related Targets,	Non-compliances with lead	Y	
	Obligations, Responsibilities & Requirements: Water Quality (Page	concentrations in the Jerrys Plains		
	C2)	water supply.		
15.	Section C: IWCM Related Targets,	Development of a Water Quality	Y	
	Obligations, Responsibilities & Requirements: : Water Quality	Management Plan in accordance		
	(Page C2)	with the Australian Water Quality		
		Guidelines.		
16.	Section C: IWCM Related Targets,	History of non-compliances in	Y	
	Obligations, Responsibilities &	relation to BOD, TSS O&G and Total		
	Requirements: STP Licence	P licence requirements.		
	Compliances(Page C5)		B.I	An ak
17.	Section C: IWCM Related Targets, Obligations, Responsibilities &	Implementation of industry standard	N	As above
	Requirements: Levels of Service	Levels of Service for water supply &		
	(Page C12)	sewerage services.		
18.	Section C: IWCM Related Targets, Obligations, Responsibilities &	Performance ranking is below 20% for:		
	Requirements: TBL Performance	Water Supply	Υ	
	Reports (Page C13)	- customer interruption		
		frequencies - average annual water supplied		
		to customers		
		- water losses		
		 residential revenue from usage charges 		
		<u>Sewerage</u>	Υ	
		- average length of interruptions		

19.	Section C: IWCM Related Targets, Obligations, Responsibilities & Requirements: Legislative Requirements (Page C15)	-	Fluoridation of Jerrys Plains water supply	-	
20.	Section C: IWCM Related Targets, Obligations, Responsibilities & Requirements: Other Compliance Aspects (Page C19 & C20)	-	Development of a water recycling policy Potential for reuse of biosolids Urban salinity in Singleton	-	

B. NON-URBAN WATER SERVICING ISSUES

Item	Issue	Relevant Department/Agency for Referral
Section 2A – Catchment Perspective: Geology & Soils (Page A9)	- Potential gully erosion & stream erosion	Singleton Council
Section 2A – Catchment Perspective: Vegetation (Page 16)	 Eight (8) vegetative species listed as vulnerable or endangered. 	CMA/Singleton Council
Section 4A – Urban Water Systems: Stormwater Levels of Service (Page A53)	 No Stormwater Levels of Service have been adopted by Council 	Singleton Council
Section C: IWCM Related Targets, Obligations, Responsibilities & Requirements: Stormwater Management (Page C21)	- Update of Stormwater Management Plan	Singleton Council
Section C: IWCM Related Targets, Obligations, Responsibilities & Requirements: Stormwater Management (Page C21)	- Develop Floodplain Risk Management Strategy	Singleton Council

APPENDIX G

PRG MEETING – MINUTES

Singleton Council

IWCM Evaluation Study

PRG Meeting

Singleton Council Chambers

At 10 am

On 3 June 2010

Minutes of Meeting

DLM Environmental Consultants Pty Ltd Strategies for a Water Efficient Future

1. PRESENT

Name Organisation

Cr John Martin Singleton Council

Andrew Speechly Rio Tinto Coal Australia

Arthur Burns Coastal Valleys Customer Service Committee

Bob Moore Singleton Resident

Dr Geoff Martin Mushroom Composters P/L
Noel Downs Wanaruah Land Council

Peter Eason Australian Mining Services International P/L

Brian Carter Singleton Council

Daryl McGregor DLM Environmental Consultants

2. APOLOGIES

Name Organisation

Ian Burton NSW Office of Water

Mitchell Bennett DECCW

Philippe Porigneaux NSW Health – Hunter New England Region
Gary Thompson Singleton Council Director Assets & Facilities

Mark Ihlein Singleton Council, Director Planning & Regulations

3. WELCOME

Cr John Martin welcomed everyone to the IWCM Project Reference Group Meeting

4. OBJECTIVES

- to understand the IWCM Process
- to review Singleton's water supply, sewerage and stormwater systems
- to review and discuss IWCM Issues
- to raise, discuss and consider additional Issues
- to identify and discuss possible solution options.

5. AGENDA

- Introduction, Welcome and Apologies –Cr John Martin, Singleton Council
- Outline of IWCM Process Daryl McGregor, DLM Environmental Consultants
- Purpose of Meeting and PRG Role Daryl McGregor, DLM Environmental Consultants
- Overview of Water Supply, Sewerage and Drainage Systems Brian Carter, Manager Water and Waste Projects, Singleton Council
- Council's Obligations as LWU Daryl McGregor, DLM Environmental Consultants
- IWCM Issues and Data Gaps Facilitated by Daryl McGregor, DLM Environmental Consultants
- Discussion
- Close

6. ROLE OF PRG

The role of the Project Reference Group in the IWCM process was explained by Daryl McGregor of DLM Environmental Consultants, namely:

- ❖ Provide input on all existing and potential issues that affect the community relating to provision of the urban water service over the next 30 years;
- ❖ Help identify suitable options for managing these issues;
- Evaluate and compare scenarios built from mixes of options on the basis of their social, environmental and economic impacts;
- Review the evaluation and comparison of scenarios in the IWCM Strategy in order to determine the preferred scenario to recommend for adoption and implementation by the water utility.

7. SINGLETON'S WATER SUPPLY, SEWERAGE AND STORMWATER SYSTEMS

Brian Carter (Singleton Council) gave an overview of Singleton's water supply, sewerage and drainage systems and options that may be available to Council:

- Water for the town area of Singleton is via pipeline from Glennies Creek Dam. The Water Treatment Plant is in close proximity to the town.
- Water is piped to surrounding villages and Mt Thorley Industrial Estate.
- Jerrys Plains is on town water, with water being taken from the Hunter River which has been treated, through an arrangement with Macquarie Generation.
- A decision from Council is required to determine if Bulga and Camberwell will be connected to town water.
- Council has a high security licence to supply water to the town. The licence is 5000 megalitres
 per annum. Currently Council does not use all the allotment and it is not envisaged that even
 with the growth of Singleton over the next 30 years that Council will need more than 5000
 megalitres per annum.
- Council has a ground water licence that is used for Parks eg. James Cook Park and Civic Centre.

- Council operates some business type activities where water is pumped to Mt Thorley and water
 is sent to several mines using their water licences. This activity has nothing to do with town
 water and therefore cannot be incorporated in the IWCM.
- Preliminary talks have been held with Hunter Water Corporation looking at long term options of interconnection of water sharing. Currently Council has a pipeline out to Mitchell Line Road and the Golden Highway, next to Hunter Water Corporation supply boundary.
- The Sewage Treatment Plant operates under an EPA licence. The Plant is reaching capacity and will soon be upgraded.
- A study has been completed considering the cost and feasibility of providing sewer services to villages and Mt Thorley industrial area. A Council decision is now required to determine if these services will be provided.

A discussion took place on the use of treated water used for irrigation by farmers along Doughboy Hollow and if there would be a reduction in water allocation to farmers once the new golf course was built or any other reuse of treated waste water occurred. Cr John Martin stated that Council had resolved that existing customers would still continue to be supplied a reasonable quantity of water, however solutions were under consideration which would use this water more efficiently and eliminate losses in evaporation and soil infiltration.

Grey Water Systems are not currently used by many residents in the local government area. Brian Carter advised that stringent controls are required and this would be one of the options to be looked at by Council.

Discussion took place on the viability of a second recycled water reticulation system around the town. Brian Carter stated that it would be a major cost to Council and that some of the older parts of the town would not be suitable. Again this is an option that would be considered by Council.

Stormwater harvesting was discussed and the viability of doing this for Singleton was considered. The interception and reuse system developed by Orange Council was discussed.

8. OUTCOMES

General definitions applicable to IWCM were presented and discussed, namely:

- IWCM: Integrated Water Cycle Management
- TARGETS: Are obligations which a Local Water Utility (ie. Singleton Council) must meet (eg. public health, environmental, levels of service provided to community (community objectives), contracts, standards etc
- IWCM ISSUES: Identified system problems and/or non-compliance with Targets. Some Issues
 that are identified in the evaluation process are not the responsibility of the Local Water Utility
 (defined as Non-IWCM Issues in the Table of Outcomes on Page 4) and these are referred to
 the relevant organisation (eg. CMA, Council (in the case of stormwater drainage, for example),
 etc)
- DATA GAPS: where information needed to determine Targets & Issues is not available from the Local water Utility
- DEALING WITH ISSUES: If the Issues can be dealt with by <u>Business as Usual</u> actions (these
 must be existing, formally committed actions or works; or formally adopted by resolution of
 Council as matters Council WILL attend to and a budget amount has been made available for)
 then there are no other actions required.

If BaU does not address the Issues, then Council will be required to proceed to develop a <u>FULL IWCM Strategy</u> (either a <u>Simplified Plan or Detailed Plan</u>).

The **Outcomes** from the Project Reference Group (PRG) Meeting held on 3 June 2010 are included in the tables below:

8. OUTCOMES (CONT'D)

A: IWCM Issues

	Issue	IWCM Issue	Non IWCM	Non-Urban Issue	BaU	Possible Solutions to IWCM Issues Raised
1.	Catchment Perspective: Population Growth Increasing customer base resulting in increases in water consumption & wastewater generation over the next 30 years.	Y	-	-	N	Extend planning beyond 30 years. Consider sensitivity scenarios
2.	Geology & Soils Potential for urban salinity with potential impacts on water & sewerage infrastructure.	Y	-	-	N	Survey & investigation required
3.	Geology & Soils Potential for groundwater recharge and/or pollution from septic tank systems and leaking wastewater lagoons.	Y	-	-	Y	
4.	Geology & Soils Potential gully & stream erosion	Y	Y		-	Refer to CMA & singleton Council
5.	Land Use High current & future water consumption by the mining industry, with potential demand impacts on the water resource	Y	-	Y	-	Refer to State Government. Need to consider the impact of discharges to the River
6.	Sewerage to Villages Four Villages (Broke, Jerrys Plains,	Υ	-	-	N	Studies complete – awaiting Council decision

Singleton Council: PRG Meeting G5

	Issue	IWCM Issue	Non IWCM	Non-Urban Issue	BaU	Possible Solutions to IWCM Issues Raised
	Bulga & Camberwell are not sewered.					
7.	Levels of Service Relevance of current Levels of Service (framed in 1998). Implementation of industry standard LOSs	Υ	-	-	N	Council to adopt new Levels of Service
8.	Land Uses Non-compliances with Licences issued by DECCW under the Protection of the Environment Act, 1997.	Y	-	?	-	Refer to DECCW & Council
9.	Urban Water Systems Non-compliances with DECCW (EPA) STP Licence.	Y	-	-	Y	New STP to be constructed – approved by Council & budgeted for Non-compliances are insignificant
10.	Trade Waste Policy Current Trade Waste Policy not in accordance with revised (2009) Guidelines	Y	-	-	N	Policy to be updated
11.	Sewerage Asset Condition Condition of sewerage infrastructure	Y	-	-	Υ	Financial management plan has been adopted by Council which addresses sewerage infrastructure replacement/refurbishment. Asset condition assessments completed. Council to provide appropriate budget.
12.	Climate Change Aspects Council endorsed strategy for managing potential climate change impacts. Assessment of "secure yield" of existing	Y	-	-	N	Ensure Drought Plan actions implemented and Demand management targets are met. Monitor "secure yield" studies

Singleton Council: PRG Meeting G6

	Issue	IWCM Issue	Non IWCM	Non-Urban Issue	BaU	Possible Solutions to IWCM Issues Raised
	water source (Glennies Creek Dam).			ISSUE		issues Naiseu
13.	Water Quality Non-compliance with total coliforms and fluoride concentrations in the Singleton water supply.	Υ	-	-	Y	Corrective actions taken – sampling methods enhanced
14.	Water Quality Non-compliances with lead concentrations in the Jerrys Plains water supply.	Υ	-	-	Y	No longer an issue
15.	Water Quality Development of a Water Quality Management Plan in accordance with the Australian Water Quality Guidelines.	N	-	-	Y	Water Quality Plan being drafted and planned completion by December 2010
16.	TBL Performance Reports Water Supply - customer interruption frequencies - average annual water supplied to customers - water losses - residential revenue from usage charges TBL Performance Reports Sewerage - average length interruptions	Y	-	-	Y	Singleton applying a continuous improvement approach to performance
17.	Legislative Requirements Fluoridation of Jerrys Plains water supply	N			-	Not an issue for the community. High natural levels of fluoride in the water.
18.	Other Compliance Aspects Development of a water recycling policy Potential for reuse of biosolids	N N	-	-	-	Not considered as issues by the PRG

Singleton Council: PRG Meeting

B: Issues Raised by PRG

Issue	IWCM Issue	Community Preference	BaU	Possible Solution
19. Use of Town water	Υ	Υ	Υ	Council can & does require
supply by new/large				new industries to purchase
industries				water entitlements on the
				market
20. Collection of Source	Υ	Υ	Υ	Incentives are currently
Water				provided by Council to install
 rain/stormwater 				rainwater tanks
• ground water				
- incentives by Council				
21. Aquifer recharge in Valley	Υ	Y	N	To be considered when
for wetlands.				action plan developed under
				IWCM Strategy
22. Water restrictions –	Υ	Y	Υ	Drought Plan makes full
uniformity required &				provision for implementation
restrictions tied to water				of water restrictions
licences of other users				

Singleton Council: PRG Meeting G8

9. MAJOR ISSUES

The following were identified as the major issues facing the Singleton LWU:

- Security of Water Supply in the face of potential impacts of climate change;
- ❖ Age & condition of existing sewerage infrastructure
- Potential servicing impacts of growth in the Shire

The Meeting closed at 2.45 pm

APPENDIX H

GLOSSARY & ABBREVIATIONS

Contents

1.	GLOSSARY	1
2.	ABBREVIATIONS	5

Contents i of i

9.1.1 GLOSSARY

This Glossary contains terms included within and additional to those contained in the text.

Acid sulphate (sulfate) soils Includes acid sulphate soils and potential acid sulphate soils.

Acid sulphate soils contain highly acidic layers resulting from the aeration of materials that are rich in iron sulphates. This oxidation produces hydrogen ions in excess of the capacity of the sediment to neutralise the acidity resulting in soils of pH of 4 or less when

measured in dry season conditions.

Alluvial Deposited by rivers in low-lying areas and flood plains.

Aquifer A layer of rock or sediment that allows water to move through it and

from which water can be extracted. Confined aquifers have a layer of

rock or clay above them, which is impermeable to water.

Basix A planning tool developed by the NSW Government used by

development applicants to measure their compliance with environmental guidelines covering water and greenhouse gas efficiency and other related building aspects. Required for building

(and renovation) approval.

Best Practice An industry standard recognising the most effective management

methods of the time.

Biodiversity The variety of life forms, the different plants, animals and micro-

organisms, the genes they contain and the ecosystems they form.

Capital works program A schedule of planned capital expenditure, normally over a period of

thirty years for water supply and sewerage businesses.

Catchment The area of land drained by a river and its tributaries.

Colluvial (deposits) Deposits of loose material that have been carried by gravity and are

usually found at foot slopes of hills.

Dissolved oxygen The concentration of oxygen which is dissolved in water and

compared with oxygen 'saturation' at a particular temperature.

Dual reticulation The provision of reclaimed water through a second set of pipes for

non-potable uses, in addition to potable water through the first set of

pipes.

Electrical conductivity The most widely used and convenient method of measuring the

salinity of water is by electrical conductivity. One measure of electrical conductivity is 'micro-Siemens per centimetre'. The shorthand expression for this is the 'electrical conductivity unit', 'EC

unit' or just 'EC'.

Faecal coliform A type of bacteria found in the faecal material of humans and other

mammals that is an indicator of faecal pollution.

Floodplain Flat land beside a river that is inundated when the river overflows

its banks during a flood.

Fractured rock strata These occur in rocks eg slate, phyllite and basalt, and allow water to

move through broken joints, bedding plains or faults.

Geology Science of learning about the earth: its origin, structures,

composition, historical changes and processes.

Greywater Water form a household, excluding toilet water.

Groundwater Water beneath the surface held in or moving through saturated

layers of soil, sediment or rock.

Ground water flow system The term ground water flow system (GWFS) refers to the

underground extent of a hydrological system, including places that water enters, is transmitted, stored and departs. It also refers to the particular physical attributes of that system, including geophysical

characteristics, geology, regolith and topography.

Hydrogeology The science pertaining to ground water in or moving through soils

and rock formations and the transport of materials that are either in

suspension or dissolved in the water.

Landscape An area of land and its physical features. A term that we use to

describe an area that has common features. For example Leeton Shire may be in a range of landscapes, depending on whether we are looking at the type of agricultural production, vegetation or

landforms.

Local water utility The water supply and sewerage businesses of a local council.

Nutrients A source of nourishment. Key nutrients in wastewaters are

phosphorus and nitrogen.

Piezometer A tube inserted into an aquifer to measure the ground water. When

the ground water is under pressure the piezometer measures the

hydraulic head or level.

Permeability The capacity of a substance (for example, soil or rock) to allow water

to pass through it. Sand, for example, is said to have high

permeability.

Potable water Water of a standard fit to drink.

Rainwater tank Storage tank for collecting rainwater from the roofs of buildings.

Recharge Water that infiltrates through the soil surface to the watertable.

water.

Reuse The use of treated sewage effluent or treated stormwater to replace

the use of potable water.

Runoff The proportion of rainfall that flows across the ground surface,

generally to enter drainage lines.

Salination The process by which land becomes salt-affected or salinised.

Salinised land Land affected by salinity.

Salinity The concentration of salts in land and water, usually expressed in

EC units.

Salinity hazard Factor that contributes to salinity risk.

Salinity risk When applied to a catchment refers to a subcatchment the relative

risk of land salinisation, or saline discharge of a concentration that is high in comparison with the rest of the catchment or adjacent

catchments.

Salt concentration Level of salts on the land surface or in soil, rocks or water.

Salt load The amount of salt carried in water flow in rivers, ground water or

off the soil surface, in a given time period.

Sewage The used water supply of a community including water-carried

waste matter from homes and businesses.

Sewage treatment plant A facility to treat sewage to produce treated effluent and biosolids.

Sewerage Drainage system for taking sewage away from the community to a

sewage treatment plant.

Soil profile A vertical section of earth from the soil surface to parent rock

material that shows the different soils horizons.

Stormwater Rain water that flows over hard surfaces in urban areas and is

collected in drainage systems for disposal.

Stormwater detention Holding stormwater on-site for a period of time before releasing it

downstream.

Stormwater retention Keeping stormwater on-site for reuse.

Subsoil The layer of soil below the topsoil, generally deeper than 10cm.

Surface water Water on the surface of the land, for example in rivers, creeks, lakes

and dams.

Suspended solids The smaller, lighter material such as clay, silt and fine sand carried

in suspension in water.

Topsoil The surface or upper level of soil, generally within 10cm of the

surface.

Topography The detailed description and analysis of the features of a relatively

small area, district or locality.

Typical residential bill The annual bill paid by a residential customer that is not a

pensioner or the owner of a vacant block.

Water balance A state of equilibrium when rainfall or irrigation water in a

landscape is accounted for by the sum of runoff, plant water use,

evaporation, recharge and changes in soil moisture content.

Water demand The water needs of a town including homes, businesses and public

organisations.

Water table The watertable is the upper surface of ground water. The soil profile

is fully saturated below the watertable and unsaturated above it.

Water quality The biological, chemical and physical properties of water.

Water supply The available water sources, water extraction, storage, transfer and

treatment systems to supply town water.

Water treatment plant A facility to treat raw water to a potable water quality.

Wastewater See sewage.

Weathering Chemical, physical and biological decomposition of rocks. This can

result in the formation of a soil profile.

ABBREVIATIONS

a Annum

ABS Australian Bureau of Statistics

ADWG Australian Drinking Water Guidelines

ARI Average Recurrence Interval

BASIX Building Sustainability Index

BOD Biological Oxygen Demand

BPM Best Practice Management

c Centigrade

CAP Catchment Action Plan

Cfu/100 mL Number of colony forming units per 100 millilitres

CMA Catchment Management Authority

cm Centimetre

COAG Council of Australian Governments

CTWS&SP Country Towns Water Supply and Sewerage Program

d Day

DA Development Application

DCP Development Control Plan

DEC Department of Environment & Conservation

DECC Department of Environment & Climate Change

DECCW Department of Environment, Climate Change & Water

DEUS Department of Energy, Utilities & Sustainability

DIPNR Department of Infrastructure, Planning & Natural Resources

DLG Department of Local Government

DLWC Department of Land and Water Conservation

DNR Department of Natural Resources

DWE Department of Water and Energy

EC Electrical Conductivity

E coli Escherichia coli

EIP Environmental Improvement Program

EP Equivalent person

EPA Environmental Protection Authority

ET Equivalent Tenement

FSC Forbes Shire Council

GL Gigalitre

GMA Groundwater Management Area

GWMP Groundwater Management Plan

ha Hectare

IWCM Integrated Water Cycle Management

kg Kilogram

KPI Key Performance Indicator

KRA Key Result Area

kL Kilolitre

kW Kilowatt

L Litre

LEP Local Environmental Plan

LGA Local Government Area

LWU Local Water Utility

mg/L Milligram per litre

MI Murrumbidgee Irrigation

mL millilitre

ML Megalitre

mm Millimetre

NFR Non Filterable Residue

NPV Net Present Value

NPWS National Parks & Wildlife Service

NSW New South Wales

NTU Nephelometric Turbidity Unit

OH&S Occupational Health and Safety

pa Per annum

POEO Protection of the Environment Operations Act, 1997, NSW

PRG Project Reference Group

PRP Pollution Reduction Program

PWWF Peak Wet Weather Flow

REP Regional Environmental Plan

RTA Roads and Traffic Authority

RWPS Raw Water Pumping Station

s Second

SBP Strategic Business Plan

SEPP State Environmental Planning Policy

SMP Stormwater Management Plan

SOE State of the Environment Report

STP Sewage Treatment Plant

TBL Triple Bottom Line

TDS Total Dissolved Solids

TN Total Nitrogen

TP Total Phosphorus

TSS Total Suspended Solids

µg Microgram

μS Microsiemen

UFW Unaccounted For Water

WFP Water Filtration Plant

WQO Water Quality Objectives

WSP Water Sharing Plan

WSUD Water Sensitive Urban Design

WTP Water Treatment Plant

WWTP Wastewater Treatment Plant

yr Year